> Since integers are chosen uniformly, this would guarantee (?) that the
> polynomial is generated uniformly. Only hitch is that I don't know if
> there is such inttovec is in in SAGE yet. mhansen, any idea?

Yes, this is pretty much what I'm doing.  While I don't have those
exact functions, they would be easy to implement.

How fast do these need to be?  Here's a rough function that uniformly
selects monomials without replacement from all possible monomials with
degree less than d.

def random_monomials(n, degree, terms):
    #Get the counts of the total number of monomials
    #of degree d
    counts = [1]  #degree 0
    for d in range(1, degree):
        counts.append(binomial(n+d-1, d))
    total = sum(counts)
    #Select a random indices
    indices = sample(xrange(total), terms)
    monomials = []
    for random_index in indices:
        #Figure out which degree it corresponds to
        d = 0
        while random_index >= counts[d]:
            random_index -= counts[d]
            d += 1
        #Generate the corresponding monomial
        comb = choose_nk.from_rank(random_index, n+d-1, n-1)
        monomial = [ comb[0] ]
        monomial += map(lambda i: comb[i+1]-comb[i]-1, range(n-2))
        monomial.append( n+d-1-comb[-1]-1 )
        monomials.append(monomial)
    return monomials

Here's an example:

sage: time  random_monomials(20, 40, 20)
CPU times: user 0.09 s, sys: 0.00 s, total: 0.09 s
Wall time: 0.09

[[8, 1, 5, 0, 0, 1, 2, 0, 1, 1, 2, 0, 0, 2, 4, 2, 1, 4, 3, 1],
 [0, 0, 9, 2, 0, 7, 2, 0, 3, 2, 1, 0, 3, 1, 0, 1, 4, 0, 4, 0],
 [0, 0, 3, 0, 1, 4, 3, 1, 0, 2, 1, 3, 4, 1, 1, 0, 6, 7, 0, 0],
 [0, 2, 3, 0, 0, 2, 1, 2, 5, 3, 0, 0, 1, 5, 2, 0, 1, 1, 9, 0],
 [0, 1, 1, 7, 0, 1, 6, 0, 1, 0, 1, 0, 1, 6, 2, 0, 7, 0, 2, 1],
 [7, 0, 3, 1, 0, 6, 1, 4, 0, 8, 0, 0, 0, 0, 0, 1, 3, 3, 0, 0],
 [0, 0, 0, 4, 1, 5, 3, 1, 1, 0, 0, 2, 3, 3, 3, 1, 4, 0, 1, 6],
 [1, 2, 5, 0, 5, 1, 1, 0, 0, 7, 0, 1, 1, 1, 1, 2, 3, 4, 1, 0],
 [1, 7, 0, 0, 4, 3, 0, 2, 0, 0, 1, 8, 1, 1, 0, 0, 2, 5, 0, 0],
 [0, 4, 0, 3, 5, 0, 0, 0, 1, 0, 1, 3, 2, 1, 8, 4, 0, 0, 1, 0],
 [1, 0, 9, 0, 1, 7, 3, 1, 2, 0, 0, 1, 0, 0, 5, 1, 0, 6, 0, 0],
 [1, 3, 0, 3, 5, 0, 1, 2, 0, 2, 4, 1, 0, 4, 1, 2, 3, 1, 4, 0],
 [0, 2, 3, 8, 1, 0, 3, 1, 0, 1, 1, 1, 0, 1, 5, 5, 1, 5, 0, 0],
 [3, 0, 4, 0, 8, 0, 3, 1, 0, 2, 0, 1, 0, 3, 1, 6, 2, 2, 0, 1],
 [2, 5, 1, 0, 1, 0, 2, 5, 1, 2, 3, 3, 0, 0, 0, 4, 4, 0, 0, 0],
 [1, 0, 6, 2, 5, 0, 0, 0, 1, 4, 2, 0, 5, 0, 1, 1, 0, 0, 3, 4],
 [1, 1, 0, 2, 0, 1, 1, 1, 3, 3, 2, 2, 1, 0, 0, 1, 1, 1, 11, 7],
 [7, 0, 3, 0, 4, 1, 2, 1, 6, 0, 0, 1, 3, 1, 0, 0, 7, 3, 0, 0],
 [1, 2, 3, 1, 0, 1, 0, 0, 3, 3, 2, 0, 5, 0, 0, 0, 3, 1, 2, 7],
 [0, 5, 0, 3, 1, 1, 2, 0, 1, 1, 0, 1, 4, 2, 8, 2, 2, 1, 0, 2]]


--Mike

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to