While the lines

sage: A.<x, y> = PolynomialRing(QQ, 2, order='deglex')                      
                   
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7 ])                        
                    
sage: f = x*y^13 + y^12                                                    
                    
sage: M = f.lift(I)
sage: M
sage: y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + 
x^2*y^3 + y^4]      sage: sum( map( mul , zip( M, I.gens() ) ) ) == f      
                                        
True

from the doc give a correct result, we get a wrong result if we use the 
term order 'neglex' (or certain other orders) instead of 'deglex'.

sage: A.<x, y> = PolynomialRing(QQ, 2, order='neglex')                      
                   
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7 ])                        
                    
sage: f = x*y^13 + y^12                                                    
                    
sage: M = f.lift(I)                                                        
                    
sage: M                                                                    
                    
[-y^7, -y^4 - x^2*y^3 - x^3*y^4 - x^4*y^2 - x^5*y^3 - x^6*y - x^7*y^2 - x^8]
sage: sum( map( mul , zip( M, I.gens() ) ) ) == f                          
                    
False

This happens with v9.2 in the SageMathCell, and with v9.3.beta5 too.

-- Peter Mueller

-- 
You received this message because you are subscribed to the Google Groups 
"sage-devel" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-devel+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sage-devel/8299ccf8-49f6-4897-a88f-2c3af901313bn%40googlegroups.com.

Reply via email to