While the lines sage: A.<x, y> = PolynomialRing(QQ, 2, order='deglex') sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7 ]) sage: f = x*y^13 + y^12 sage: M = f.lift(I) sage: M sage: y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + y^4] sage: sum( map( mul , zip( M, I.gens() ) ) ) == f True
from the doc give a correct result, we get a wrong result if we use the term order 'neglex' (or certain other orders) instead of 'deglex'. sage: A.<x, y> = PolynomialRing(QQ, 2, order='neglex') sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7 ]) sage: f = x*y^13 + y^12 sage: M = f.lift(I) sage: M [-y^7, -y^4 - x^2*y^3 - x^3*y^4 - x^4*y^2 - x^5*y^3 - x^6*y - x^7*y^2 - x^8] sage: sum( map( mul , zip( M, I.gens() ) ) ) == f False This happens with v9.2 in the SageMathCell, and with v9.3.beta5 too. -- Peter Mueller -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/8299ccf8-49f6-4897-a88f-2c3af901313bn%40googlegroups.com.