The SR.exponentialize method implements :
sage: [u(x)==u(x)._sympy_().rewrite("exp")._sage_() ....: for u in (sin, cos, tan, csc, sec, cot, sinh, cosh, tanh, csch, sech, coth)] [sin(x) == -1/2*I*e^(I*x) + 1/2*I*e^(-I*x), cos(x) == 1/2*e^(I*x) + 1/2*e^(-I*x), tan(x) == -I*(e^(I*x) - e^(-I*x))/(e^(I*x) + e^(-I*x)), csc(x) == 2*I/(e^(I*x) - e^(-I*x)), sec(x) == 2/(e^(I*x) + e^(-I*x)), cot(x) == I*(e^(I*x) + e^(-I*x))/(e^(I*x) - e^(-I*x)), sinh(x) == -1/2*e^(-x) + 1/2*e^x, cosh(x) == 1/2*e^(-x) + 1/2*e^x, tanh(x) == -(e^(-x) - e^x)/(e^(-x) + e^x), csch(x) == -2/(e^(-x) - e^x), sech(x) == 2/(e^(-x) + e^x), coth(x) == -(e^(-x) + e^x)/(e^(-x) - e^x)] However, we also have : sage: [u(x)==u(x)._sympy_().rewrite("log")._sage_() ....: for u in (arcsin, arccos, arctan, arccsc, arcsec, arccot, arcsinh, arccosh, arctanh, arccsch, arcsech, arccoth)] [arcsin(x) == -I*log(I*x + sqrt(-x^2 + 1)), arccos(x) == 1/2*pi + I*log(I*x + sqrt(-x^2 + 1)), arctan(x) == -1/2*I*log(I*x + 1) + 1/2*I*log(-I*x + 1), arccsc(x) == -I*log(sqrt(-1/x^2 + 1) + I/x), arcsec(x) == 1/2*pi + I*log(sqrt(-1/x^2 + 1) + I/x), arccot(x) == -1/2*I*log(I/x + 1) + 1/2*I*log(-I/x + 1), arcsinh(x) == log(x + sqrt(x^2 + 1)), arccosh(x) == log(sqrt(x + 1)*sqrt(x - 1) + x), arctanh(x) == 1/2*log(x + 1) - 1/2*log(-x + 1), arccsch(x) == log(sqrt(1/x^2 + 1) + 1/x), arcsech(x) == log(sqrt(1/x + 1)*sqrt(1/x - 1) + 1/x), arccoth(x) == 1/2*log(1/x + 1) - 1/2*log(-1/x + 1)] Hence two questions : - Is it worth implementing it (for the benefit of high-school/undergrads/engineering math) ? - Should it be implemented by SR.exponentialize or by a distinct method ? (My preference is for the former, notwithstanding the apparent discrepancy in names…). Your advice is welcome. -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/353e1f57-31dc-4b8e-a495-0b8e67bc5e10n%40googlegroups.com.