I agree with Samuel that the numbers involved are huge. After sage: xtn,xtd=xt.numerator_denominator()
sage: ytn,ytd=yt.numerator_denominator() one can see that xtn ~ - e^(2*t) xtd ~ e^(2*t) ytn ~ e^(8*t) ytd ~ 2*e^(8*t) However, SageMath has no problems evaluating it: sage: *for* i in sxrange(*10000.*,*10010.*,*1*): ....: print(xt(t=i),yt(t=i)) ....: -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 -1.00000000000000 0.500000000000000 sage: On Mon, 4 Jul 2022 at 17:27, Samuel Lelievre <samuel.lelie...@gmail.com> wrote: > The expressions for the coordinates involve exp(8*t) and t^24. > > sage: exp(8*88.) > 5.53751938928459e305 > > sage: 88.^24 > 4.65140474534598e46 > > On Mon, 4 Jul 2022 at 17:25, Niranjana K M <niranjan...@gmail.com> wrote: > Also the following: > > > parametric_plot(C, (t,89.0,95.0)) > ..... > verbose 0 (2200: graphics.py, get_minmax_data) ymin was NaN (setting to 0) > verbose 0 (2200: graphics.py, get_minmax_data) ymax was NaN (setting to 0) > > > parametric_plot(C, (t,89,95)) > ..... > verbose 0 (2200: graphics.py, get_minmax_data) ymin was NaN (setting to 0) > verbose 0 (2200: graphics.py, get_minmax_data) ymax was NaN (setting to 0) > > > Regards > Niranjana > > On Monday, July 4, 2022 at 8:42:58 PM UTC+5:30 Niranjana K M wrote: > >> Some thing happened after t=89. Is it because of the following two cases: >> >> >> for T in srange(1,100,1.0): >> print(T, float(C(T)[0]), float(C(T)[1])) >> ..... >> 87.0000000000000 -0.9999999999999999 0.5000000000000001 >> 88.0000000000000 -0.9999999999999999 0.5 >> 89.0000000000000 -1.0 0.5 >> 90.0000000000000 -1.0 0.5 >> 91.0000000000000 -1.0 0.5 >> 92.0000000000000 -0.9999999999999999 0.5 >> 93.0000000000000 -1.0 0.5 >> 94.0000000000000 -1.0 0.5 >> 95.0000000000000 -1.0 0.49999999999999994 >> 96.0000000000000 -1.0 0.5000000000000001 >> 97.0000000000000 -1.0 0.5 >> 98.0000000000000 -0.9999999999999999 0.49999999999999994 >> 99.0000000000000 -1.0 0.49999999999999994 >> >> >> >> for T in srange(1,100,1): >> print(T, float(C(T)[0]), float(C(T)[1])) >> ..... >> 87 -0.9999999999999999 0.5 >> 88 -0.9999999999999999 0.49999999999999994 >> 89 -1.0 inf >> 90 -1.0 inf >> 91 -1.0 inf >> 92 -0.9999999999999999 inf >> 93 -1.0 inf >> 94 -1.0 nan >> 95 -1.0 nan >> 96 -1.0 nan >> 97 -1.0 nan >> 98 -0.9999999999999999 nan >> 99 -1.0 nan >> >> On Monday, July 4, 2022 at 7:51:58 PM UTC+5:30 GMS wrote: >> >>> >>> Sorry, my message was incomplete. >>> >>> So yes, there is a problem. >>> >>> On Mon, 4 Jul 2022 at 16:14, G. M.-S. <list...@gmail.com> wrote: >>> >>>> >>>> Hi Gema. >>>> >>>> Doing >>>> >>>> sage: xt,yt=C[*0*],C[*1*] >>>> >>>> sage: xt.taylor(t,oo,*3*) >>>> >>>> -6*t^4*e^(-3*t)*log(t)^2 - 3*t*e^(-2*t)*log(t)^2 - 1 >>>> >>>> sage: yt.taylor(t,oo,*3*) >>>> >>>> 1/2*t*e^(-2*t)*log(t)^2 + 1/2*(2*t^4*log(t)^2 + t*log(t)^3)*e^(-3*t) + >>>> 1/2 >>>> >>>> sage: >>>> >>>> you see that it converges towards (-1, 1/2) exponentially quickly. >>>> >>>> HTH, >>>> >>>> Guillermo >>>> >>>> On Mon, 4 Jul 2022 at 13:56, Gema María Diaz <gemama...@gmail.com> >>>> wrote: >>>> >>>>> Hello, >>>>> >>>>> I've the following curve, >>>>> >>>>> t=var('t') >>>>> C=[(-exp(2*t) + (-t^2 - 2*t)*ln(t)^2 - t^6 + 2*exp(t)*t^3)/(exp(2*t) + >>>>> (t^2 - t)*ln(t)^2 + t^6 - 2*exp(t)*t^3), ((28*t^18 + 60*ln(t)^2*t^14 + >>>>> 36*ln(t)^4*t^10 - 10*ln(t)^3*t^10 + 4*t^6*ln(t)^6 - >>>>> 6*ln(t)^5*t^6)*exp(2*t) >>>>> + (-56*t^15 - 80*ln(t)^2*t^11 - 24*ln(t)^4*t^7 + 10*ln(t)^3*t^7 + >>>>> 2*ln(t)^5*t^3)*exp(3*t) + (70*t^12 + 60*ln(t)^2*t^8 + 6*ln(t)^4*t^4 - >>>>> 5*ln(t)^3*t^4)*exp(4*t) + (-56*t^9 - 24*ln(t)^2*t^5 + ln(t)^3*t)*exp(5*t) >>>>> + >>>>> (28*t^6 + 4*t^2*ln(t)^2)*exp(6*t) - 8*exp(7*t)*t^3 + exp(8*t) + (t^8 + >>>>> t^4)*ln(t)^8 + ((t^5 + 2*t^3)*exp(t) - t^8 - 2*t^6)*ln(t)^7 + (4*t^12 - >>>>> 8*t^9*exp(t))*ln(t)^6 + (-2*t^12 + 6*t^9*exp(t))*ln(t)^5 + (6*t^16 - >>>>> 24*t^13*exp(t))*ln(t)^4 + (-t^16 + 5*t^13*exp(t))*ln(t)^3 + (4*t^20 - >>>>> 24*t^17*exp(t))*ln(t)^2 + t^24 - 8*exp(t)*t^21)/(2*(((3*t^4 - >>>>> 2*t^3)*ln(t)^4 + (18*t^8 - 6*t^7)*ln(t)^2 + 15*t^12)*exp(2*t) + ((-12*t^5 >>>>> + >>>>> 4*t^4)*ln(t)^2 - 20*t^9)*exp(3*t) + ((3*t^2 - t)*ln(t)^2 + >>>>> 15*t^6)*exp(4*t) >>>>> - 6*exp(5*t)*t^3 + exp(6*t) + (t^6 - t^5)*ln(t)^6 + (t^5/2 - >>>>> exp(t)*t^2/2)*ln(t)^5 + ((-6*t^7 + 4*t^6)*exp(t) + 3*t^10 - 2*t^9)*ln(t)^4 >>>>> + ((-12*t^11 + 4*t^10)*exp(t) + 3*t^14 - t^13)*ln(t)^2 + t^18 - >>>>> 6*exp(t)*t^15)*(exp(2*t) + t^2*ln(t)^2 + t^3*(t^3 - 2*exp(t))))] >>>>> >>>>> and I'd like to see how it is like. Just with: >>>>> >>>>> parametric_plot(C, (t,0,80), plot_points=5500) >>>>> >>>>> one sees what's going on. However, with >>>>> >>>>> parametric_plot(C, (t,0,90), plot_points=5500) >>>>> >>>>> suddenly a vertical lines appears. I think it is a bug, am I right ? >>>>> >>>>> thanks >>>>> Gema M. >>>>> >>>> -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/CANnG188r%3DYFzW-_5iNOAR93t7EruHTHxUvywoJZgC-6Caprz0A%40mail.gmail.com.