>From the notebook's report a problem bugtracker:

Problem Computing Artin Symbol

------------ problem description

The command artin_symbol(P) doesn't compute the Artin Symbol in a
specific case.  Below is the code.  The prime 83 splits as PQ, where
P, Q have N(P)=83^5.  There is an Artin symbol, but the command
returns an empty result.   For other primes like 3, 7, there is no
problem.

sage: M.<g>=NumberField(x^10 + 2*x^9 + 11*x^8 - 14*x^7 + 13*x^6 -
160*x^5 + 575*x^4 + 1288*x^3 + 4890*x^2 + 4764*x +
4483,'h').galois_closure()
sage: print(M);
sage: G=M.galois_group()
sage: print(M.discriminant().factor())
sage: [G.artin_symbol(P) for P in M.primes_above(83)]

Number Field in g with defining polynomial x^10 + 2*x^9 + 11*x^8 -
14*x^7 + 13*x^6 - 160*x^5 + 575*x^4 + 1288*x^3 + 4890*x^2 + 4764*x +
4483

-1 * 47^5

[(), (), (), (), (), (), (), (), (), ()]

--------- expected output

Should get an output like

[(1,3,9,5,8)(2,6,4,7,10), (1,8,5,9,3)(2,10,7,4,6)]

which is the Artin symbol for 3

------------ note

I can confirm this in 4.1.1

H

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send an email to [email protected]
To unsubscribe from this group, send an email to 
[email protected]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to