On Oct 1, 5:58 pm, kcrisman <kcris...@gmail.com> wrote:
[Snip]

> Still, this idea is worth trying for others to play with.  Especially
> if it were first implemented with a 1 or 2 level recursion, it would
> help out with a lot of integrals and limits which just need to know
> x>,<,==0.  How efficient is Mma's Reduce for this sort of thing?
>
> - kcrisman

Not sure if this answers your question, but here is an example from
MMA. I tried including a few assumptions to reduce the length of the
output of Reduce[], but it didn't help. Basically, every solution is a
set of conditions linked by '&&', while different solutions are
separated by '||'. I find this kind of output pretty helpful, as it
allows simple tests and then picking the right solution for each case.
Note also that MMA's Reduce[] also solves inequalities. Not sure if
maxima can do this, but it would be great.

Cheers,
Stan

Reduce[wv == (wv1 /. wb -> wb1) && p > 0 && veloc > 0 && mort > 0 &&
  lwat > 0 && jbiom > 0 && rwat > 0 && av >= 0, wv, Reals]

(veloc > 0 && av > 1 && lwat == veloc/(-av + av^2) && rwat > 0 &&
   p > 0 && mort > 0 &&
   jbiom > 0 && (bv == -Sqrt[((
       av^2 lwat^2 - av^3 lwat^2 + av lwat veloc)/(-lwat rwat +
        av lwat rwat - rwat veloc))] ||
     bv == Sqrt[(
      av^2 lwat^2 - av^3 lwat^2 + av lwat veloc)/(-lwat rwat +
       av lwat rwat - rwat veloc)])) || (veloc >
    0 && ((av == 0 && lwat > 0 &&
       rwat > 0 && ((bv < 0 && p > 0 && mort > 0 &&
           jbiom > 0) || (bv > 0 && p > 0 && mort > 0 &&
           jbiom > 0))) || (0 < av <= 1 && lwat > 0 && rwat > 0 &&
       p > 0 && mort > 0 &&
       jbiom > 0) || (av >
        1 && ((0 < lwat < veloc/(-av + av^2) && rwat > 0 && p > 0 &&
           mort > 0 && jbiom > 0) || (lwat == veloc/(-av + av^2) &&
           rwat > 0 && ((bv < 0 && p > 0 && mort > 0 &&
               jbiom > 0) || (bv > 0 && p > 0 && mort > 0 &&
               jbiom > 0))) || (veloc/(-av + av^2) < lwat <
            veloc/(-1 + av) &&
           rwat > 0 && ((bv < -Sqrt[((
                 av^2 lwat^2 - av^3 lwat^2 +
                  av lwat veloc)/(-lwat rwat + av lwat rwat -
                  rwat veloc))] && p > 0 && mort > 0 &&

               jbiom >
                0) || (-Sqrt[((
                 av^2 lwat^2 - av^3 lwat^2 +
                  av lwat veloc)/(-lwat rwat + av lwat rwat -
                  rwat veloc))] < bv < Sqrt[(
                av^2 lwat^2 - av^3 lwat^2 +
                 av lwat veloc)/(-lwat rwat + av lwat rwat -
                 rwat veloc)] && p > 0 && mort > 0 &&
               jbiom > 0) || (bv > Sqrt[(
                av^2 lwat^2 - av^3 lwat^2 +
                 av lwat veloc)/(-lwat rwat + av lwat rwat -
                 rwat veloc)] && p > 0 && mort > 0 &&
               jbiom > 0))) || (lwat > veloc/(-1 + av) && rwat > 0 &&
           p > 0 && mort > 0 && jbiom > 0)))) &&
   wv == (-av^3 lwat p + av^4 lwat p - av^2 p veloc)/(-av^2 lwat^2 +
     av^3 lwat^2 - bv^2 lwat rwat + av bv^2 lwat rwat -
     av lwat veloc - bv^2 rwat veloc))


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send an email to sage-devel@googlegroups.com
To unsubscribe from this group, send an email to 
sage-devel-unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URL: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to