On Sat, Feb 20, 2010 at 9:40 PM, John H Palmieri <jhpalmier...@gmail.com>wrote:
> On Feb 19, 9:11 am, John Cremona <john.crem...@gmail.com> wrote: > > On 19 February 2010 06:32, Minh Nguyen <nguyenmi...@gmail.com> wrote: > > > > > Hi folks, > > > > > This is the final alpha release of Sage 4.3.3. The next release would > > > be an rc0. The development version of Sage is now in feature freeze. > > > > On 32-bit Suse I get this fuzz: > > > > File "/local/jec/sage-4.3.3.alpha1/devel/sage/sage/misc/functional.py", > > line 705: > > sage: h.n() > > Expected: > > 0.33944794097891573 > > Got: > > 0.33944794097891567 > > I was curious about this, so I tried specifying the number of digits: > > sage: h = integral(sin(x)/x^2, (x, 1, pi/2)); h > integrate(sin(x)/x^2, x, 1, 1/2*pi) > sage: h.n() > 0.33944794097891573 > sage: h.n(digits=14) > 0.33944794097891573 > sage: h.n(digits=600) > 0.33944794097891573 > sage: h.n(digits=600) == h.n(digits=14) > True > sage: h.n(prec=50) == h.n(prec=1000) > True > > Is there an inherit limit in Sage on the accuracy of numerical > integrals? > You can use mpmath for arbitrary precision integration: sage: import mpmath sage: mpmath.mp.dps = 50 sage: mpmath.quad(lambda x: mpmath.sin(x)/x**2, [1, mpmath.pi/2]) mpf('0.33944794097891567969192717186521861799447698826917531') Fredrik -- To post to this group, send an email to sage-devel@googlegroups.com To unsubscribe from this group, send an email to sage-devel+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-devel URL: http://www.sagemath.org