Hi, The version 0.7 of SageManifolds <http://sagemanifolds.obspm.fr/> has just been released (see the changelog <http://sagemanifolds.obspm.fr/changelog.html>).
Numerous internal changes have been performed, resulting in a better integration into Sage's parent/element framework. Specifically, here is the list of parents in v0.7 of SageManifolds, with the corresponding categories: 1/ Parents in the algebraic part (ticket: #15916 <http://trac.sagemath.org/ticket/15916>) (cf. the documentation TOC <http://sagemanifolds.obspm.fr/doc/reference/tensor_free_modules/index.html> ): ---------------------------------------- - *FiniteRankFreeModule:* free module of finite rank over a commutative ring category=Modules(ring) NB: this class differs from Sage's *FreeModule* or *VectorSpace* in so far as it does not assume any distinguished basis on the free module (see comparison <http://sagemanifolds.obspm.fr/doc/reference/tensor_free_modules/sage/tensor/modules/finite_rank_free_module.html#diff-freemodule> ) - *TensorFreeModule*: tensor product of a free module with itself or its dual category=Modules(ring) - *ExtPowerFreeModule*: exterior power of the dual of a free module category=Modules(ring) - *FreeModuleHomset*: set of homomorphisms between free modules category: Category of homsets of modules over "ring" - *FreeModuleLinearGroup*: general linear group of a free module category=Groups() 2/ Parents in the differential part (cf. the documentation TOC <http://sagemanifolds.obspm.fr/doc/reference/manifolds>): ------------------------------------------- - *Manifold*: differentiable manifold over R category=Sets() - *RealLine*: field of real numbers, as a manifold of dimension 1, with a canonical coordinate chart category=Sets() - *ManifoldSubset*: subset of a differentiable manifold category=Sets(), facade=manifold - *ManifoldOpenSubse*t: open subset of a differentiable manifold category=Sets(), facade=manifold - *OpenInterval*: open real interval, as an open subset of RealLine category=Sets(), facade=manifold - *Submanifold*: embedded submanifold of a differentiable manifold category=Sets() - *TangentSpace*: vector space tangent to a manifold category=VectorSpaces(SR) - *ManifoldHomset*: set of differentiable mappings between two differentiable manifolds category: Set of Morphisms from manifold A to manifold B in Category of sets - *ManifoldCurveSet*: set of differentiable curves in a manifold category: Category of homsets of sets - *ScalarFieldAlgebra*: commutative algebra of differentiable functions M --> R, where M is a manifold category=CommutativeAlgebras(SR) - *VectorFieldModule*: module of vector fields on a manifold category=Modules(scalar_field_algebra) - *VectorFieldFreeModule*: free module of vector fields on a parallelizable manifold category=Modules(scalar_field_algebra) - *AutomorphismFieldGroup*: general linear group of the module of vector fields on a manifold category=Groups() - *AutomorphismFieldParalGroup*: general linear group of the module of vector fields on a parallelizable manifold category=Groups() - *TensorFieldModule*: module of tensor fields of a given type (k,l) on a manifold category=Modules(scalar_field_algebra) - *TensorFieldFreeModule*: free module of tensor fields of a given type (k,l) on a parallelizable manifold category=Modules(scalar_field_algebra) - *DiffFormModule*: module of differential forms of a given degree on a manifold category=Modules(scalar_field_algebra) - *DiffFormFreeModule*: free module of differential forms of a given degree on a parallelizable manifold category=Modules(scalar_field_algebra) Regarding the submission to trac, the algebraic part (ticket #15916 <http://trac.sagemath.org/ticket/15916>) is under review, while the ticket for the differential part (#14865 <http://trac.sagemath.org/ticket/14865>) must be reorganized (probably split in smaller tickets...). Needless to say, any comment / suggestion is welcome. Eric. -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to [email protected]. To post to this group, send email to [email protected]. Visit this group at http://groups.google.com/group/sage-devel. For more options, visit https://groups.google.com/d/optout.
