Dear linear algebra specialists, I am stuck with an elementary linear algebra problem where Sage is (for now) of no help. I want to compute the rank of a 30 x 30 dense matrix over a number field of degree 30.
sage: x = polygen(QQ, 'x') sage: K = NumberField(x^30 - 3, 'a') sage: M = MatrixSpace(K, 30) sage: m = M.random_element() sage: m.rank() See also https://ask.sagemath.org/question/50626/compute-dimension-of-vector-subspace/ Any hint? Best Vincent -- You received this message because you are subscribed to the Google Groups "sage-devel" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-devel+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-devel/2f5b1208-e65e-d603-0b73-91121eacb591%40gmail.com.