var('x y')
f1(x,y)=((x/7)^2*sqrt(abs(abs(x)-3)/(abs(x)-3))+(y/3)^2
*sqrt(abs(y+(3*sqrt(33))/7)/(y+(3*sqrt(33))/7))-1)
f2(x,y)=(abs(x/2)-((3*sqrt(33)-7)/112)*x^2-3+sqrt(1-
(abs(abs(x)-2)-1)^2)- y)
f3(x,y)=(9*sqrt(abs((abs(x)-1)*(abs(x)-3/4))/((1-
abs(x))*(abs(x)-3/4)))-8*abs(x)-y)
f4(x,y)=(3*abs(x)+.75*sqrt(abs((abs(x)-3/4)*(abs(x)-1/2))/((3/4-
abs(x))*(abs(x)-1/2)))- y)
f5(x,y)=(9/4*sqrt(abs((x-1/2)*(x+1/2))/((1/2-x)*(1/2+x)))-y)
f6(x,y)=((6*sqrt(10))/ 7+(3/2-abs(x)/2)*sqrt(abs(abs(x)-1)/(abs(x)-1))-
(6*sqrt(10))/14*sqrt(4- (abs(x)-1)^2)-y)p1=implicit_plot(f1==0,(-8,8),(-3,3),plot_points=200) p2=implicit_plot(f2==0,(-8,8),(-3,3),plot_points=200) p3=implicit_plot(f3==0,(-8,8),(-3,3),plot_points=200) p4=implicit_plot(f4==0,(-8,8),(-3,3),plot_points=200) p5=implicit_plot(f5==0,(-8,8),(-3,3),plot_points=200) p6=implicit_plot(f6==0,(-8,8),(-3,3),plot_points=200) show(p1+p2+p3+p4+p5+p6) So the above works. I did a contour_plot for each factor and the intersection of the domains for all of the factors looks like the empty set, so I'm guessing the original plot is a little fishy (batty?). Matt On Jul 29, 3:26 pm, Rob Beezer <[email protected]> wrote: > Cute. ;-) > > What happens if you try building it up one factor at a time? > > On Jul 29, 11:36 am, "D.C. Ernst" <[email protected]> wrote: > > > > > > > > > A student of mine just sent me the following batman logo: > > >http://i.imgur.com/CNy9J.jpg -- You received this message because you are subscribed to the Google Groups "sage-edu" group. To post to this group, send email to [email protected]. To unsubscribe from this group, send email to [email protected]. For more options, visit this group at http://groups.google.com/group/sage-edu?hl=en.
