#5307: Bug in conductor() over number fields
---------------------------+------------------------------------------------
 Reporter:  cremona        |       Owner:  was           
     Type:  defect         |      Status:  new           
 Priority:  major          |   Milestone:  sage-3.4      
Component:  number theory  |    Keywords:  elliptic curve
---------------------------+------------------------------------------------
 There is something wrong in the conductor computation of an elliptic curve
 over a field of class number >1:

 {{{
 sage: K.<w>=NumberField(x^2+x+6)
 sage: E=EllipticCurve([w,-1,0,-w-6,0])
 sage: E.conductor()
 ---------------------------------------------------------------------------
 TypeError                                 Traceback (most recent call
 last)

 /home/masgaj/.sage/temp/host_56_150/7547/_home_masgaj__sage_init_sage_0.py
 in <module>()

 /local/jec/sage-3.3.rc0/local/lib/python2.5/site-
 packages/sage/schemes/elliptic_curves/ell_number_field.pyc in
 conductor(self)
     745         OK = self.base_ring().ring_of_integers()
     746         self._conductor =
 prod([d.prime()**(d.conductor_valuation()) \
 --> 747                                 for d in self.local_data()],\
     748                                OK.ideal(1))
     749         return self._conductor

 /local/jec/sage-3.3.rc0/local/lib/python2.5/site-
 packages/sage/schemes/elliptic_curves/ell_number_field.pyc in
 local_data(self, P, proof)
     394         if P is None:
     395             primes =
 self.base_ring()(self.discriminant()).support()
 --> 396             return [self._get_local_data(pr, proof) for pr in
 primes]
     397
     398         from sage.schemes.elliptic_curves.ell_local_data import
 check_prime

 /local/jec/sage-3.3.rc0/local/lib/python2.5/site-
 packages/sage/schemes/elliptic_curves/ell_number_field.pyc in
 _get_local_data(self, P, proof)
     416             pass
     417         from sage.schemes.elliptic_curves.ell_local_data import
 EllipticCurveLocalData
 --> 418         self._local_data[P] = EllipticCurveLocalData(self, P,
 proof)
     419         return self._local_data[P]
     420

 /local/jec/sage-3.3.rc0/local/lib/python2.5/site-
 packages/sage/schemes/elliptic_curves/ell_local_data.pyc in __init__(self,
 E, P, proof, algorithm)
     138                 self._reduction_type = Eint.ap(p) # = 0,-1 or +1
     139         else:
 --> 140             self._Emin, ch, self._val_disc, self._fp, self._KS,
 self._cp, self._split = self._tate(proof)
     141             if self._fp>0:
     142                 if self._Emin.c4().valuation(p)>0:

 /local/jec/sage-3.3.rc0/local/lib/python2.5/site-
 packages/sage/schemes/elliptic_curves/ell_local_data.pyc in _tate(self,
 proof)
     748                 a6 /= pi**6
     749                 verbose("Non-minimal equation, dividing
 out...\nNew model is %s"%([a1, a2, a3, a4, a6]), t, 1)
 --> 750         C = C._tidy_model()
     751         return (C, p, val_disc, fp, KS, cp, split)
     752

 /local/jec/sage-3.3.rc0/local/lib/python2.5/site-
 packages/sage/schemes/elliptic_curves/ell_number_field.pyc in
 _tidy_model(self)
     297             (a1, a2, a3, a4, a6) = [ZK(a) for a in
 self.a_invariants()]
     298         except TypeError:
 --> 299             raise TypeError, "_tidy_model() requires an integral
 model."
     300         # N.B. Must define s, r, t in the right order.
     301         if ZK.degree() == 1:

 TypeError: _tidy_model() requires an integral model.
 }}}

 I think I wrote most of the relevant code, so it is my fault and I will
 fix it!

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/5307>
Sage <http://sagemath.org/>
Sage - Open Source Mathematical Software: Building the Car Instead of 
Reinventing the Wheel

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to