#5978: Can't construct the quotient of an univariate polynomial ring by its zero
ideal
------------------------------------+---------------------------------------
Reporter: jmbr | Owner: tbd
Type: defect | Status: needs_review
Priority: minor | Milestone: sage-5.6
Component: algebra | Resolution:
Keywords: | Work issues:
Report Upstream: N/A | Reviewers:
Authors: Travis Scrimshaw | Merged in:
Dependencies: | Stopgaps:
------------------------------------+---------------------------------------
Old description:
> {{{
> ----------------------------------------------------------------------
> | Sage Version 3.4.2.rc0, Release Date: 2009-04-30 |
> | Type notebook() for the GUI, and license() for information. |
> ----------------------------------------------------------------------
> sage: R = QQ['x']
> sage: R.quotient(R.zero_ideal())
> ---------------------------------------------------------------------------
> TypeError Traceback (most recent call
> last)
>
> /home/mabshoff/.sage/temp/sage.math.washington.edu/1567/_home_mabshoff__sage_init_sage_0.py
> in <module>()
>
> /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
> packages/sage/rings/ring.so in sage.rings.ring.CommutativeRing.quotient
> (sage/rings/ring.c:6627)()
>
> /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
> packages/sage/rings/quotient_ring.pyc in QuotientRing(R, I, names)
> 137 try:
> 138 if I.is_principal():
> --> 139 return R.quotient_by_principal_ideal(I.gen(), names)
> 140 except (AttributeError, NotImplementedError):
> 141 pass
>
> /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
> packages/sage/rings/polynomial/polynomial_ring.pyc in
> quotient_by_principal_ideal(self, f, names)
> 1092 """
> 1093 import sage.rings.polynomial.polynomial_quotient_ring
> -> 1094 return
> sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing(self,
> f, names)
> 1095
> 1096
>
> /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
> packages/sage/rings/polynomial/polynomial_quotient_ring.pyc in
> PolynomialQuotientRing(ring, polynomial, names)
> 149 c = polynomial.leading_coefficient()
> 150 if not c.is_unit():
> --> 151 raise TypeError, "polynomial must have unit leading
> coefficient"
> 152 R = ring.base_ring()
> 153 if isinstance(R, sage.rings.integral_domain.IntegralDomain):
>
> TypeError: polynomial must have unit leading coefficient
> }}}
New description:
{{{
----------------------------------------------------------------------
| Sage Version 3.4.2.rc0, Release Date: 2009-04-30 |
| Type notebook() for the GUI, and license() for information. |
----------------------------------------------------------------------
sage: R = QQ['x']
sage: R.quotient(R.zero_ideal())
---------------------------------------------------------------------------
TypeError Traceback (most recent call
last)
/home/mabshoff/.sage/temp/sage.math.washington.edu/1567/_home_mabshoff__sage_init_sage_0.py
in <module>()
/scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
packages/sage/rings/ring.so in sage.rings.ring.CommutativeRing.quotient
(sage/rings/ring.c:6627)()
/scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
packages/sage/rings/quotient_ring.pyc in QuotientRing(R, I, names)
137 try:
138 if I.is_principal():
--> 139 return R.quotient_by_principal_ideal(I.gen(), names)
140 except (AttributeError, NotImplementedError):
141 pass
/scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
packages/sage/rings/polynomial/polynomial_ring.pyc in
quotient_by_principal_ideal(self, f, names)
1092 """
1093 import sage.rings.polynomial.polynomial_quotient_ring
-> 1094 return
sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing(self,
f, names)
1095
1096
/scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
packages/sage/rings/polynomial/polynomial_quotient_ring.pyc in
PolynomialQuotientRing(ring, polynomial, names)
149 c = polynomial.leading_coefficient()
150 if not c.is_unit():
--> 151 raise TypeError, "polynomial must have unit leading
coefficient"
152 R = ring.base_ring()
153 if isinstance(R, sage.rings.integral_domain.IntegralDomain):
TypeError: polynomial must have unit leading coefficient
}}}
----
Apply: trac_5978-quotient_zero_ideal-ts.patch
--
Comment (by tscrim):
Fixed other doctests.
For patchbot:
Apply: trac_5978-quotient_zero_ideal-ts.patch
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/5978#comment:6>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to
[email protected].
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en.