#5978: Can't construct the quotient of an univariate polynomial ring by its zero
ideal
------------------------------------+---------------------------------------
       Reporter:  jmbr              |         Owner:  tbd         
           Type:  defect            |        Status:  needs_review
       Priority:  minor             |     Milestone:  sage-5.6    
      Component:  algebra           |    Resolution:              
       Keywords:                    |   Work issues:              
Report Upstream:  N/A               |     Reviewers:              
        Authors:  Travis Scrimshaw  |     Merged in:              
   Dependencies:                    |      Stopgaps:              
------------------------------------+---------------------------------------

Old description:

> {{{
> ----------------------------------------------------------------------
> | Sage Version 3.4.2.rc0, Release Date: 2009-04-30                   |
> | Type notebook() for the GUI, and license() for information.        |
> ----------------------------------------------------------------------
> sage: R = QQ['x']
> sage: R.quotient(R.zero_ideal())
> ---------------------------------------------------------------------------
> TypeError                                 Traceback (most recent call
> last)
>
> /home/mabshoff/.sage/temp/sage.math.washington.edu/1567/_home_mabshoff__sage_init_sage_0.py
> in <module>()
>
> /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
> packages/sage/rings/ring.so in sage.rings.ring.CommutativeRing.quotient
> (sage/rings/ring.c:6627)()
>
> /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
> packages/sage/rings/quotient_ring.pyc in QuotientRing(R, I, names)
>     137     try:
>     138         if I.is_principal():
> --> 139             return R.quotient_by_principal_ideal(I.gen(), names)
>     140     except (AttributeError, NotImplementedError):
>     141         pass
>
> /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
> packages/sage/rings/polynomial/polynomial_ring.pyc in
> quotient_by_principal_ideal(self, f, names)
>    1092         """
>    1093         import sage.rings.polynomial.polynomial_quotient_ring
> -> 1094         return
> sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing(self,
> f, names)
>    1095
>    1096
>
> /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
> packages/sage/rings/polynomial/polynomial_quotient_ring.pyc in
> PolynomialQuotientRing(ring, polynomial, names)
>     149     c = polynomial.leading_coefficient()
>     150     if not c.is_unit():
> --> 151         raise TypeError, "polynomial must have unit leading
> coefficient"
>     152     R = ring.base_ring()
>     153     if isinstance(R, sage.rings.integral_domain.IntegralDomain):
>
> TypeError: polynomial must have unit leading coefficient
> }}}

New description:

 {{{
 ----------------------------------------------------------------------
 | Sage Version 3.4.2.rc0, Release Date: 2009-04-30                   |
 | Type notebook() for the GUI, and license() for information.        |
 ----------------------------------------------------------------------
 sage: R = QQ['x']
 sage: R.quotient(R.zero_ideal())
 ---------------------------------------------------------------------------
 TypeError                                 Traceback (most recent call
 last)

 
/home/mabshoff/.sage/temp/sage.math.washington.edu/1567/_home_mabshoff__sage_init_sage_0.py
 in <module>()

 /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
 packages/sage/rings/ring.so in sage.rings.ring.CommutativeRing.quotient
 (sage/rings/ring.c:6627)()

 /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
 packages/sage/rings/quotient_ring.pyc in QuotientRing(R, I, names)
     137     try:
     138         if I.is_principal():
 --> 139             return R.quotient_by_principal_ideal(I.gen(), names)
     140     except (AttributeError, NotImplementedError):
     141         pass

 /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
 packages/sage/rings/polynomial/polynomial_ring.pyc in
 quotient_by_principal_ideal(self, f, names)
    1092         """
    1093         import sage.rings.polynomial.polynomial_quotient_ring
 -> 1094         return
 sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing(self,
 f, names)
    1095
    1096

 /scratch/mabshoff/sage-3.4.2.final/local/lib/python2.5/site-
 packages/sage/rings/polynomial/polynomial_quotient_ring.pyc in
 PolynomialQuotientRing(ring, polynomial, names)
     149     c = polynomial.leading_coefficient()
     150     if not c.is_unit():
 --> 151         raise TypeError, "polynomial must have unit leading
 coefficient"
     152     R = ring.base_ring()
     153     if isinstance(R, sage.rings.integral_domain.IntegralDomain):

 TypeError: polynomial must have unit leading coefficient
 }}}

 ----

 Apply: trac_5978-quotient_zero_ideal-ts.patch

--

Comment (by tscrim):

 Fixed other doctests.

 For patchbot:

 Apply: trac_5978-quotient_zero_ideal-ts.patch

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/5978#comment:6>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en.

Reply via email to