#5159: [with patches, with positive review but needs work] Add functionality to
Galois groups
---------------------------+------------------------------------------------
 Reporter:  davidloeffler  |       Owner:  davidloeffler               
     Type:  enhancement    |      Status:  assigned                    
 Priority:  major          |   Milestone:  sage-3.4.2                  
Component:  number theory  |    Keywords:  galois groups, number theory
---------------------------+------------------------------------------------

Comment(by cremona):

 Oops:  on a 64-bit machine I get this:
 {{{
 j...@host-57-44:~/sage-3.4/devel/sage-5159$ sage -t
 sage/rings/number_field/galois_group.py
 sage -t  "devel/sage-5159/sage/rings/number_field/galois_group.py"
 **********************************************************************
 File
 "/home/jec/sage-3.4/devel/sage-5159/sage/rings/number_field/galois_group.py",
 line 343:
     sage: G.decomposition_group(P^2)
 Expected:
     Traceback (most recent call last):
     ...
     ValueError: Fractional ideal (1/984*a^7 - 71/1968*a^5 + 29/984*a^3 +
 527/328*a) is not prime
 Got:
     Traceback (most recent call last):
       File "/home/jec/sage-3.4/local/bin/ncadoctest.py", line 1231, in
 run_one_test
         self.run_one_example(test, example, filename, compileflags)
       File "/home/jec/sage-3.4/local/bin/sagedoctest.py", line 38, in
 run_one_example
         OrigDocTestRunner.run_one_example(self, test, example, filename,
 compileflags)
       File "/home/jec/sage-3.4/local/bin/ncadoctest.py", line 1172, in
 run_one_example
         compileflags, 1) in test.globs
       File "<doctest __main__.example_18[6]>", line 1, in <module>
         G.decomposition_group(P**Integer(2))###line 343:
     sage: G.decomposition_group(P^2)
       File "/home/jec/sage-3.4/local/lib/python2.5/site-
 packages/sage/rings/number_field/galois_group.py", line 357, in
 decomposition_group
         raise ValueError, "%s is not prime" % P
     ValueError: Fractional ideal (-1/492*a^7 + 101/1968*a^5 - 115/328*a^3
 + 1717/984*a) is not prime
 **********************************************************************
 File
 "/home/jec/sage-3.4/devel/sage-5159/sage/rings/number_field/galois_group.py",
 line 445:
     sage: G.artin_symbol(K.primes_above(2)[0])
 Expected:
     Traceback (most recent call last):
     ...
     ValueError: Fractional ideal (-1/8364*b^7 + 1/492*b^6 - 11/16728*b^5 -
 101/1968*b^4 + 209/2788*b^3 + 115/328*b^2 - 3139/8364*b + 251/984) is
 ramified
 Got:
     Traceback (most recent call last):
       File "/home/jec/sage-3.4/local/bin/ncadoctest.py", line 1231, in
 run_one_test
         self.run_one_example(test, example, filename, compileflags)
       File "/home/jec/sage-3.4/local/bin/sagedoctest.py", line 38, in
 run_one_example
         OrigDocTestRunner.run_one_example(self, test, example, filename,
 compileflags)
       File "/home/jec/sage-3.4/local/bin/ncadoctest.py", line 1172, in
 run_one_example
         compileflags, 1) in test.globs
       File "<doctest __main__.example_22[7]>", line 1, in <module>
         G.artin_symbol(K.primes_above(Integer(2))[Integer(0)])###line 445:
     sage: G.artin_symbol(K.primes_above(2)[0])
       File "/home/jec/sage-3.4/local/lib/python2.5/site-
 packages/sage/rings/number_field/galois_group.py", line 463, in
 artin_symbol
         if len(t) > 1: raise ValueError, "%s is ramified" % P
     ValueError: Fractional ideal (43/33456*b^7 + 7/1968*b^6 -
 809/33456*b^5 - 35/656*b^4 + 367/2788*b^3 + 61/492*b^2 - 4651/16728*b +
 757/984) is ramified
 **********************************************************************
 2 items had failures:
    1 of   8 in __main__.example_18
    1 of   8 in __main__.example_22
 }}}

 I think you cannot rely on pari giveing you the primes in a specific
 order:
 {{{
 sage: P = K.primes_above(17)[0]
 sage: P
 Fractional ideal (1/492*a^7 - 101/1968*a^5 + 115/328*a^3 - 733/984*a)
 sage: P^2
 Fractional ideal (-1/492*a^7 + 101/1968*a^5 - 115/328*a^3 + 1717/984*a)
 sage: Q = K.primes_above(17)[1]
 sage: Q^2
 Fractional ideal (-5/2788*a^7 + 587/11152*a^5 - 2791/5576*a^3 +
 13915/5576*a)
 }}}
 so the doctest needs to be designed to allow for that.  Perhaps define P
 via
 {{{
 sage: P=K.ideal(17,a^2)
 sage: P
 Fractional ideal (1/492*a^7 - 101/1968*a^5 + 115/328*a^3 - 733/984*a)
 sage: P.is_prime()
 True
 }}}
 (which may or may not be the P i your doctest).

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/5159#comment:19>
Sage <http://sagemath.org/>
Sage - Open Source Mathematical Software: Building the Car Instead of 
Reinventing the Wheel

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to