#5666: forming ideals in IntegerModRing_generic does not work
---------------------+------------------------------------------------------
Reporter: cremona | Owner: tbd
Type: defect | Status: new
Priority: major | Milestone:
Component: algebra | Keywords:
---------------------+------------------------------------------------------
It is impossible to create ideals in rings of the form Integers mod n:
{{{
sage: R = Integers(10)
sage: R.ideal(1)
---------------------------------------------------------------------------
AttributeError Traceback (most recent call
last)
/home/masgaj/.sage/temp/host_56_150/5831/_home_masgaj__sage_init_sage_0.py
in <module>()
/local/jec/sage-3.4.1.alpha0/local/lib/python2.5/site-
packages/sage/rings/quotient_ring.pyc
in ideal(self, *gens, **kwds)
487 gens = gens[0]
488 from
sage.rings.polynomial.multi_polynomial_libsingular import
MPolynomialRing_libsingular
--> 489 if not
isinstance(self.__R,MPolynomialRing_libsingular) and not
self.__R._has_singular:
490 # pass through
491 MPolynomialRing_generic.ideal(self,gens,**kwds)
AttributeError: 'sage.rings.integer_ring.IntegerRing_class' object has
no attribute '_has_singular'
sage: R.ideal([2,4])
---------------------------------------------------------------------------
AttributeError Traceback (most recent call
last)
(as above)
}}}
It looks as if the ideal() method for class {{{QuotientRing_generic }}}
is
only really geared to polynomial ring quotients.
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/5666>
Sage <http://sagemath.org/>
Sage - Open Source Mathematical Software: Building the Car Instead of
Reinventing the Wheel
--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to
[email protected]
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---