#5893: Norm Form for Number Fields and Orders
---------------------------+------------------------------------------------
 Reporter:  roed           |       Owner:  roed        
     Type:  enhancement    |      Status:  new         
 Priority:  major          |   Milestone:  sage-feature
Component:  number theory  |    Keywords:              
---------------------------+------------------------------------------------
 Often if one is doing computations with number fields and orders by hand,
 it's useful to have the norm form with respect to a given basis.  For
 example:

 {{{
 sage: K.<sqrt2> = NumberField(x^2 - 2); T.<a, b> = QQ[]
 sage: K.power_basis()
 [1, sqrt2]
 sage: K.norm_form([a, b])
 a^2 - 2*b^2
 sage: K.norm_form([1, b])
 1 - 2*b^2
 sage: OK = NumberField(x^2-5, names='sqrt5').maximal_order(); T.<a, b> =
 ZZ[]
 sage: OK.basis()
 [1/2*sqrt5 + 1/2, sqrt5]
 sage: OK.norm_form([a, b])
 -a^2 - 5*a*b - 5*b^2
 }}}

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/5893>
Sage <http://sagemath.org/>
Sage - Open Source Mathematical Software: Building the Car Instead of 
Reinventing the Wheel

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to