#5947: Coleman integrals of exact forms
--------------------------------+-------------------------------------------
 Reporter:  jen                 |       Owner:  was       
     Type:  defect              |      Status:  new       
 Priority:  major               |   Milestone:  sage-3.4.2
Component:  algebraic geometry  |    Keywords:            
--------------------------------+-------------------------------------------
 Say I define a hyperelliptic curve and calculate the action of Frobenius
 \phi on basis differentials w_i. Sage outputs the matrix and f_i such that
 \phi* w_i = df_i + \sum A_ij w_j.
 Then for f_i, int(df_i,P,Q) = f_i(Q)-f_i(P). However, it seems Sage is
 computing f.diff() to be -df instead of df.

 {{{
 sage: R.<x> = QQ['x']
 sage: H = HyperellipticCurve(x*(x-1)*(x+9))
 sage: K = Qp(7,10)
 sage: HK = H.change_ring(K)
 sage: import sage.schemes.elliptic_curves.monsky_washnitzer as mw
 sage: M_frob, forms = mw.matrix_of_frobenius_hyperelliptic(HK)
 sage: f = forms[0]
 sage: P = HK(9,36)
 sage: Q = HK.teichmuller(P)
 sage: HK.coleman_integral(f.diff(),P,Q)
 6*7^2 + 5*7^3 + 7^4 + 7^5 + 7^6 + 3*7^7 + 5*7^9 + 4*7^10 + O(7^11)
 }}}
 However, it seems that f.diff() is actually -f.diff(), as the answer
 should be
 {{{
 sage: f(Q[0],Q[1])-f(P[0],P[1])
 7^2 + 7^3 + 5*7^4 + 5*7^5 + 5*7^6 + 3*7^7 + 6*7^8 + 7^9 + 2*7^10 + O(7^11)
 }}}
 which is in fact the negation of what it's computing:
 {{{
 sage: f(P[0],P[1])-f(Q[0],Q[1])
 6*7^2 + 5*7^3 + 7^4 + 7^5 + 7^6 + 3*7^7 + 5*7^9 + 4*7^10 + O(7^11)
 }}}

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/5947>
Sage <http://sagemath.org/>
Sage - Open Source Mathematical Software: Building the Car Instead of 
Reinventing the Wheel

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to