#15575: Remove deprecated functions from symmetric functions
-------------------------------------+-------------------------------------
       Reporter:  zabrocki           |        Owner:
           Type:  task               |       Status:  new
       Priority:  minor              |    Milestone:  sage-6.1
      Component:  combinatorics      |   Resolution:
       Keywords:  deprecate, sf      |    Merged in:
        Authors:  Anne Schilling,    |    Reviewers:  Travis Scrimshaw
  Mike Zabrocki                      |  Work issues:
Report Upstream:  N/A                |       Commit:
         Branch:                     |  cebf1d45e63f0d82877414d39704596483c477c0
  public/combinat/sf/fixes-15575     |     Stopgaps:
   Dependencies:  #15473             |
-------------------------------------+-------------------------------------

Comment (by vbraun):

 See also "The Pickle Jar" in the developer guide. I don't know how much
 the new and old kschur diverge, so its not clear whether this can be
 patched up. You want the following to work:
 {{{
 sage:
 
explain_pickle(open('_class__sage_combinat_sf_kschur_kSchurFunctions_t__.sobj').read())
 pg_kSchurFunctions_t = unpickle_global('sage.combinat.sf.kschur',
 'kSchurFunctions_t')
 si1 = unpickle_newobj(pg_kSchurFunctions_t, ())
 pg_PolynomialRing =
 unpickle_global('sage.rings.polynomial.polynomial_ring_constructor',
 'PolynomialRing')
 pg_RationalField = unpickle_global('sage.rings.rational_field',
 'RationalField')
 si2 = unpickle_newobj(pg_RationalField, ())
 pg_Rational = unpickle_global('sage.rings.rational', 'Rational')
 unpickle_build(si2, {'_embedding':None, '_convert_method_name':None,
 '_cdata':None, '_category':None, '_names':('x',), '_generators':None,
 '_base':si2, '_pickle_version':1r, '_element_constructor':pg_Rational,
 '_initial_convert_list':[], '_element_init_pass_parent':False,
 '_initial_action_list':[], '_initial_coerce_list':[]})
 si3 = pg_PolynomialRing(si2, 't', None, False)
 pg_kSchurFunction_t = unpickle_global('sage.combinat.sf.kschur',
 'kSchurFunction_t')
 pg_Partition_class = unpickle_global('sage.combinat.partition',
 'Partition_class')
 si4 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si4, {'_hash':11648069979105038r, '_list':[]})
 pg_make_integer = unpickle_global('sage.rings.integer', 'make_integer')
 pg_Polynomial_rational_dense =
 unpickle_global('sage.rings.polynomial.polynomial_element_generic',
 'Polynomial_rational_dense')
 pg_make_rational = unpickle_global('sage.rings.rational', 'make_rational')
 pg_Partitions_all = unpickle_global('sage.combinat.partition',
 'Partitions_all')
 si5 = unpickle_newobj(pg_Partitions_all, ())
 unpickle_build(si5, {})
 si6 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si6, {'_hash':11648069979105038r, '_list':[]})
 si7 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si7, {'_hash':8209412804330245758r, '_list':[1r]})
 si8 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si8, {'_hash':8209412804330245758r, '_list':[1r]})
 si9 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si9, {'_hash':2572996434470752684r, '_list':[1r, 1r]})
 si10 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si10, {'_hash':2572996434470752684r, '_list':[1r, 1r]})
 si11 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si11, {'_hash':8209412804333245623r, '_list':[2r]})
 si12 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si12, {'_hash':8209412804333245623r, '_list':[2r]})
 si13 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si13, {'_hash':8209412804332245752r, '_list':[3r]})
 si14 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si14, {'_hash':8209412804332245752r, '_list':[3r]})
 si15 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si15, {'_hash':-4668329529095103182r, '_list':[1r, 1r,
 1r]})
 si16 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si16, {'_hash':-4668329529095103182r, '_list':[1r, 1r,
 1r]})
 si17 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si17, {'_hash':-8309117097053660241r, '_list':[2r, 1r]})
 si18 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si18, {'_hash':-8309117097053660241r, '_list':[2r, 1r]})
 si19 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si19, {'_hash':-6748296760446418944r, '_list':[4r, 2r]})
 si20 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si20, {'_hash':4133880771460994560r, '_list':[3r, 3r]})
 si21 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si21, {'_hash':4133880771460994560r, '_list':[3r, 3r]})
 si22 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si22, {'_hash':-6748296760446418944r, '_list':[4r, 2r]})
 si23 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si23, {'_hash':8209412804337245611r, '_list':[6r]})
 si24 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si24, {'_hash':-2305370892016763800r, '_list':[5r, 1r]})
 si25 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si25, {'_hash':8979288807710256482r, '_list':[3r, 1r, 1r,
 1r]})
 si26 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si26, {'_hash':8979288807710256482r, '_list':[3r, 1r, 1r,
 1r]})
 si27 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si27, {'_hash':7164836384071759149r, '_list':[4r, 1r, 1r]})
 si28 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si28, {'_hash':-2305370892016763800r, '_list':[5r, 1r]})
 si29 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si29, {'_hash':8209412804337245611r, '_list':[6r]})
 si30 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si30, {'_hash':7164836384071759149r, '_list':[4r, 1r, 1r]})
 si31 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si31, {'_hash':7575274459230553269r, '_list':[2r, 2r, 2r]})
 si32 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si32, {'_hash':-6748296760446418944r, '_list':[4r, 2r]})
 si33 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si33, {'_hash':8036262802894913307r, '_list':[3r, 2r, 1r]})
 si34 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si34, {'_hash':7575274459230553269r, '_list':[2r, 2r, 2r]})
 si35 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si35, {'_hash':1237320366067835607r, '_list':[2r, 1r, 1r,
 1r, 1r]})
 si36 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si36, {'_hash':8979288807710256482r, '_list':[3r, 1r, 1r,
 1r]})
 si37 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si37, {'_hash':8036262802894913307r, '_list':[3r, 2r, 1r]})
 si38 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si38, {'_hash':4837218413976775966r, '_list':[2r, 2r, 1r,
 1r]})
 si39 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si39, {'_hash':1237320366067835607r, '_list':[2r, 1r, 1r,
 1r, 1r]})
 si40 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si40, {'_hash':8036262802894913307r, '_list':[3r, 2r, 1r]})
 si41 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si41, {'_hash':-6748296760446418944r, '_list':[4r, 2r]})
 si42 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si42, {'_hash':-2305370892016763800r, '_list':[5r, 1r]})
 si43 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si43, {'_hash':8036262802894913307r, '_list':[3r, 2r, 1r]})
 si44 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si44, {'_hash':7164836384071759149r, '_list':[4r, 1r, 1r]})
 si45 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si45, {'_hash':1016921802835797308r, '_list':[1r, 1r, 1r,
 1r, 1r, 1r]})
 si46 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si46, {'_hash':1016921802835797308r, '_list':[1r, 1r, 1r,
 1r, 1r, 1r]})
 si47 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si47, {'_hash':7575274459230553269r, '_list':[2r, 2r, 2r]})
 si48 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si48, {'_hash':4837218413976775966r, '_list':[2r, 2r, 1r,
 1r]})
 si49 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si49, {'_hash':1237320366067835607r, '_list':[2r, 1r, 1r,
 1r, 1r]})
 si50 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si50, {'_hash':4837218413976775966r, '_list':[2r, 2r, 1r,
 1r]})
 si51 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si51, {'_hash':4133880771460994560r, '_list':[3r, 3r]})
 si52 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si52, {'_hash':8036262802894913307r, '_list':[3r, 2r, 1r]})
 si53 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si53, {'_hash':4837218413976775966r, '_list':[2r, 2r, 1r,
 1r]})
 pg_SymmetricFunctionAlgebra_schur =
 unpickle_global('sage.combinat.sf.schur',
 'SymmetricFunctionAlgebra_schur')
 si54 = unpickle_newobj(pg_SymmetricFunctionAlgebra_schur, ())
 pg_SymmetricFunctionAlgebraElement_schur =
 unpickle_global('sage.combinat.sf.schur',
 'SymmetricFunctionAlgebraElement_schur')
 si55 = unpickle_newobj(pg_Partition_class, ())
 unpickle_build(si55, {'_hash':11648069979105038r, '_list':[]})
 si56 = unpickle_newobj(pg_Partitions_all, ())
 unpickle_build(si56, {})
 unpickle_build(si54, {'_latex_names':None, '_basis':'schur',
 '_order':None, '_list':None,
 '_element_class':pg_SymmetricFunctionAlgebraElement_schur, '_one':si55,
 '_names':None, '_prefix':'s', '_gens_dict':None, '_base':si3,
 '_combinatorial_class':si56, '_gens':None})
 unpickle_build(si1, {'_latex_names':None, '_base':si3, '_order':None,
 '_list':None, '_element_class':pg_kSchurFunction_t, '_s_to_self_cache':{},
 '_one':si4, 'k':pg_make_integer('3'), '_names':None, '_prefix':'ks3',
 '_name':'k-Schur Functions at level 3', '_gens_dict':None,
 't':pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('1')], False, True), '_combinatorial_class':si5,
 '_gens':None,
 '_self_to_s_cache':{0r:{si6:{si6:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('1')], False, False)}},
 pg_make_integer('1'):{si7:{si8:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('1')], False, False)}},
 2r:{si9:{si10:pg_Polynomial_rational_dense(si3, [pg_make_rational('1')],
 False, False)}, si11:{si12:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('1')], False, False)}},
 pg_make_integer('3'):{si13:{si14:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('1')], False, False)},
 si15:{si16:pg_Polynomial_rational_dense(si3, [pg_make_rational('1')],
 False, False)}, si17:{si18:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('1')], False, False)}}, 6r:{si19:{},
 si20:{si21:pg_Polynomial_rational_dense(si3, [pg_make_rational('1')],
 False, False), si22:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('0'), pg_make_rational('1')], False, False),
 si23:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('0'), pg_make_rational('0'), pg_make_rational('1')],
 False, False), si24:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('0'), pg_make_rational('0'), pg_make_rational('1')],
 False, False)}, si25:{si26:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('1')], False, False),
 si27:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('1')], False, False)}, si28:{}, si29:{}, si30:{},
 si31:{si32:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('0'), pg_make_rational('1')], False, False),
 si33:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('1')], False, False),
 si34:pg_Polynomial_rational_dense(si3, [pg_make_rational('1')], False,
 False)}, si35:{si36:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('0'), pg_make_rational('1')], False, False),
 si37:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('0'), pg_make_rational('1')], False, False),
 si38:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('1')], False, False),
 si39:pg_Polynomial_rational_dense(si3, [pg_make_rational('1')], False,
 False)}, si40:{si41:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('0'), pg_make_rational('1')], False, False),
 si42:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('0'), pg_make_rational('1')], False, False),
 si43:pg_Polynomial_rational_dense(si3, [pg_make_rational('1')], False,
 False), si44:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('1')], False, False)},
 si45:{si46:pg_Polynomial_rational_dense(si3, [pg_make_rational('1')],
 False, False), si47:pg_Polynomial_rational_dense(si3,
 [pg_make_rational('0'), pg_make_rational('0'), pg_make_rational('0'),
 pg_make_rational('1')], False, False),
 si48:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('0'), pg_make_rational('1')], False, False),
 si49:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('1')], False, False)},
 si50:{si51:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('0'), pg_make_rational('1')], False, False),
 si52:pg_Polynomial_rational_dense(si3, [pg_make_rational('0'),
 pg_make_rational('1')], False, False),
 si53:pg_Polynomial_rational_dense(si3, [pg_make_rational('1')], False,
 False)}}}, '_s':si54})
 si1
 }}}
 You'd definitely have to override `kSchurFunctions_t` and
 `kSchurFunction_t`. If you want to remove the pickle since everything has
 been properly deprecated post to sage-devel.

--
Ticket URL: <http://trac.sagemath.org/ticket/15575#comment:39>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/groups/opt_out.

Reply via email to