#6124: Bug in galois_group of a p-adic field extension
-----------------------+----------------------------------------------------
Reporter: jlefebvre | Owner: roed
Type: defect | Status: new
Priority: minor | Milestone: sage-4.0.1
Component: padics | Keywords: p-adic
-----------------------+----------------------------------------------------
Changes (by AlexGhitza):
* owner: was => roed
* component: number theory => padics
Old description:
> A bug in the implementation of p-adic groups.
>
> sage: K.<a> = Qp(2).extension(x^3 + x^2+1)
> sage: K.galois_group()
> ---------------------------------------------------------------------------
> ImportError Traceback (most recent call
> last)
>
> /Users/jeromelefebvre/.sage/temp/Jerome.local/23278/_Users_jeromelefebvre__sage_init_sage_0.py
> in <module>()
>
> /Applications/sage/local/lib/python2.5/site-
> packages/sage/rings/padics/unramified_extension_generic.pyc in
> galois_group(self)
> 96 ## doing this.
> 97 ##
> ---> 98 from sage.groups.perm_gps.permgroup import
> CyclicPermutationGroup
> 99 return CyclicPermutationGroup(self.modulus().degree())
> 100
>
> ImportError: cannot import name CyclicPermutationGroup
>
> While, CyclicPermutationGroup does work fine on my machine.
> sage: G=CyclicPermutationGroup(2)
> sage: G.list()
> [(), (1,2)]
New description:
A bug in the implementation of p-adic groups.
sage: K.<a> = Qp(2).extension(x^3 + x^2+1)
sage: K.galois_group()
---------------------------------------------------------------------------
ImportError Traceback (most recent call
last)
/Users/jeromelefebvre/.sage/temp/Jerome.local/23278/_Users_jeromelefebvre__sage_init_sage_0.py
in <module>()
/Applications/sage/local/lib/python2.5/site-
packages/sage/rings/padics/unramified_extension_generic.pyc in
galois_group(self)
96 ## doing this.
97 ##
---> 98 from sage.groups.perm_gps.permgroup import
CyclicPermutationGroup
99 return CyclicPermutationGroup(self.modulus().degree())
100
ImportError: cannot import name CyclicPermutationGroup
While, CyclicPermutationGroup does work fine on my machine.
sage: G=CyclicPermutationGroup(2)
sage: G.list()
[(), (1,2)]
--
Comment:
Note that in sage-4.0.rc0, there is no {{{galois_group}}} method for an
extension of {{{Qp}}}:
{{{
----------------------------------------------------------------------
| Sage Version 4.0.rc0, Release Date: 2009-05-21 |
| Type notebook() for the GUI, and license() for information. |
----------------------------------------------------------------------
sage: K.<a> = Qp(2).extension(x^3 + x^2+1)
sage: K.g # tried to tab-complete here:
K.gcd K.gens K.get_action
K.get_action_impl K.ground_ring_of_tower
K.gen K.gens_dict K.get_action_c
K.ground_ring
}}}
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/6124#comment:1>
Sage <http://sagemath.org/>
Sage - Open Source Mathematical Software: Building the Car Instead of
Reinventing the Wheel
--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to
[email protected]
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---