#16401: Use FiniteFieldHomomorphism_prime for embeddings of GF(p)
-------------------------------------+-------------------------------------
Reporter: pbruin | Owner:
Type: enhancement | Status: needs_review
Priority: minor | Milestone: sage-6.3
Component: finite rings | Resolution:
Keywords: finite field | Merged in:
homomorphism | Reviewers:
Authors: Peter Bruin | Work issues:
Report Upstream: N/A | Commit:
Branch: | 7c1595e5f5aa47b6511cc29a1ec66cff34d9a57e
u/pbruin/16401-hom_prime_finite_field| Stopgaps:
Dependencies: |
-------------------------------------+-------------------------------------
Comment (by pbruin):
Replying to [comment:2 jpflori]:
> Any reason for
> {{{
> --- a/src/sage/rings/finite_rings/hom_finite_field.pyx
> +++ b/src/sage/rings/finite_rings/hom_finite_field.pyx
> @@ -267,8 +267,6 @@ cdef class
FiniteFieldHomomorphism_generic(RingHomomorphism_im_gens):
> sage: f(a*b) == f(a) * f(b)
> True
> """
> - if not self.domain().has_coerce_map_from(x.parent()):
> - raise TypeError("%s does not coerce to %s" % (x, self.domain()))
> return x.polynomial()(self.im_gens()[0])
> }}}
This is the single-underscore `_call_()`; if I understand correctly, the
double-underscore `__call__()` will have done the work to coerce `x` into
the domain, or to raise an error if this is not possible.
--
Ticket URL: <http://trac.sagemath.org/ticket/16401#comment:3>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.