#16585: improved PolynomialSequence
-------------------------------------+-------------------------------------
       Reporter:  malb               |        Owner:
           Type:  enhancement        |       Status:  needs_review
       Priority:  major              |    Milestone:  sage-6.3
      Component:  commutative        |   Resolution:
  algebra                            |    Merged in:
       Keywords:  sd59               |    Reviewers:
        Authors:  Martin Albrecht    |  Work issues:
Report Upstream:  N/A                |       Commit:
         Branch:                     |  fef7d3bf43c0a2222fa9ddaf2809fd74603577fd
  u/malb/t16585_mpolynomial_sequence |     Stopgaps:
   Dependencies:                     |
-------------------------------------+-------------------------------------
Changes (by malb):

 * status:  new => needs_review
 * cc: mmarco (added)
 * branch:   => u/malb/t16585_mpolynomial_sequence
 * commit:   => fef7d3bf43c0a2222fa9ddaf2809fd74603577fd


Old description:

> This now works:
>
> {{{#!python
> sage: sr = mq.SR(1,1,2,4, gf2=True)
> sage: F,s = sr.polynomial_system()
> sage: I = F.ideal()
> sage: I.random_element(degree=3) # new: return some funny distribution,
> #11850
> k100*k102*x102 + k100*k102*x110 + ...
>
> sage: I.random_element(degree=3, compute_gb=True, terms=True) # new:
> uniformly random up to degree 3
> k100*k101*w112 + k100*k102*k110 + k100*k102*w102 + k100*k103*w111 + ...
>
> sage: F.is_groebner() # new: PolynomialSequence.is_groebner, cf. #10856
> False
>
> sage: F.maximal_degree() # new: PolynomialSequence.maximal_degree, cf.
> 2
>
> sage: gb = F.groebner_basis(algorithm='magma') # new: this used to fail
> sage: gb.is_groebner()
> True
>
> sage: gb.maximal_degree()
> 1
>
> sage: M = Sequence([f.lm() for f in F]) # new: this used to fail cf.
> #10680
> sage: M.maximal_degree()
> 2
>
> sage: F.reduced() # new: interreduced_basis() moved to Sequence
> Polynomial Sequence with 60 Polynomials in 36 Variables
> }}}

New description:

 This now works:

 {{{#!python
 sage: sr = mq.SR(1,1,2,4, gf2=True)
 sage: F,s = sr.polynomial_system()
 sage: I = F.ideal()
 sage: I.random_element(degree=3) # new: return some funny distribution,
 #11850
 k100*k102*x102 + k100*k102*x110 + ...

 sage: I.random_element(degree=3, compute_gb=True, terms=True) # new:
 uniformly random up to degree 3
 k100*k101*w112 + k100*k102*k110 + k100*k102*w102 + k100*k103*w111 + ...

 sage: F.is_groebner() # new: PolynomialSequence.is_groebner, cf. #10856
 False

 sage: F.maximal_degree() # new: PolynomialSequence.maximal_degree, cf.
 2

 sage: gb = F.groebner_basis(algorithm='magma') # new: this used to fail
 sage: gb.is_groebner()
 True

 sage: gb.maximal_degree()
 1

 sage: M = Sequence([f.lm() for f in F]) # new: this used to fail cf.
 #10680
 sage: M.maximal_degree()
 2

 sage: F.reduced() # new: interreduced_basis() moved to Sequence
 Polynomial Sequence with 60 Polynomials in 36 Variables
 }}}

 This ticket replaces #11850, #10856, #10680

--

--
Ticket URL: <http://trac.sagemath.org/ticket/16585#comment:1>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to