#6467: [with patch, needs review] all primitive roots modulo n
---------------------------+------------------------------------------------
 Reporter:  mvngu          |       Owner:  was                              
     Type:  enhancement    |      Status:  new                              
 Priority:  major          |   Milestone:  sage-4.1.1                       
Component:  number theory  |    Keywords:  primitive roots, generators mod n
 Reviewer:                 |      Author:  Minh Van Nguyen                  
   Merged:                 |  
---------------------------+------------------------------------------------
Changes (by newvalueoldvalue):

  * milestone:  => sage-4.1.1
  * author:  => Minh Van Nguyen


Comment:

 The patch {{{trac_6467.patch}}} adds two functions to
 {{{sage/rings/arith.py}}} for calculating all the primitive roots modulo a
 fixed integer n:
  1. {{{primitive_roots()}}} --- Return all the generators for the
 multiplicative group of integers modulo a positive integer n. Where n is a
 positive composite integer, the function uses a naive method that is
 inefficient, since I do not know of a better method. If n is a positive
 prime integer, then use the function {{{primitive_roots_prime()}}}.
  1. {{{primitive_roots_prime()}}} --- Return all the generators for the
 multiplicative group of integers modulo a positive prime p. Again, this
 uses an inefficient method since I'm not aware of a better way.

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/6467#comment:1>
Sage <http://sagemath.org/>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to