#6472: ideal.groebner_basis gives incorrect answers
---------------------+------------------------------------------------------
 Reporter:  broune   |       Owner:  tbd     
     Type:  defect   |      Status:  new     
 Priority:  major    |   Milestone:  sage-4.1
Component:  algebra  |    Keywords:          
 Reviewer:           |      Author:          
   Merged:           |  
---------------------+------------------------------------------------------
 This is wrong:

 {{{
 sage: R.<a,b,c,d>=PolynomialRing(QQ,order="lex")
 sage: ideal(a-b^16,b-c^16,c-d^1024).groebner_basis()
 [a - d^4096, b - d^16384, c - d^1024]
 }}}

 The correct answer as given by Macaulay 2:

 {{{
 i30 : R=QQ[a,b,c,d, MonomialOrder=>Lex];
 i31 : I=ideal(a-b^16,b-c^16,c-d^1024);
 i32 : gens gb I
 o32 = | c-d1024 b-d16384 a-d262144 |
 }}}

 In particular the binomial involving a should raise d to the power
 262144=2^18^, not 4096=2^12^ as Sage reports.

 I suspect that the reason is that by default Sage uses Singular to
 implement groebner_basis, and Singular has limitations on the size of
 exponents. See http://www.singular.uni-
 kl.de/Manual/latest/sing_343.htm#SEC384 which in particular says

 {{{
 the maximal allowed exponent of a ring variable depends on the ordering of
 the ring and is at least 32767.
 }}}

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/6472>
Sage <http://sagemath.org/>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to