#17922: coefficients() function more consistent between Expressions and 
polynomial
rings
-------------------------------------------------+-------------------------
       Reporter:  JoalHeagney                    |        Owner:
           Type:  enhancement                    |       Status:  new
       Priority:  minor                          |    Milestone:  sage-6.6
      Component:  algebra                        |   Resolution:
       Keywords:  coeffs, rings, polynomials,    |    Merged in:
  expression, symbolic                           |    Reviewers:
        Authors:                                 |  Work issues:
Report Upstream:  N/A                            |       Commit:
         Branch:                                 |     Stopgaps:
   Dependencies:                                 |
-------------------------------------------------+-------------------------

Old description:

> {{{
> y = 3*x^3 + 2*x^2 - 4*x
> print(y)
> type(y)
> }}}
> Gives:
>
> {{{
> 3*x^3 + 2*x^2 - 4*x
> <type 'sage.symbolic.expression.Expression'>
> }}}
> And
>
> {{{
> M = matrix(SR,[[1,2],[0,-2]])
> ch = M.charpoly()
> print(ch)
> type(ch)
> }}}
> gives
>
> {{{
> x^2 + x - 2
> <class
> 'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field'>
> }}}
> But:
>
> {{{
> y.coeffs()
> }}}
> returns
>
> {{{
> [[−4,1],[2,2],[3,3]]
> }}}
> and
>
> {{{
> ch.coeffs()
> }}}
> returns
>
> {{{
> [−2,1,1]
> }}}
>
> I'd prefer if these two functions returned the same format, preferably
> the Expression format, as having access to the index allows list
> comprehension tastiness.

New description:

 The different behaviour between the two rings consists of
  1. the `coefficients(sparse=True)` (which is default) method returns a
 list of pairs in `SR`, and a list in `PolynomialRing`,
  2. `Expression.dict()` does not exist.
 Example:
 {{{
 y = 3*x^3 + 2*x^2 - 4*x
 print(y)
 type(y)
 }}}
 Gives:

 {{{
 3*x^3 + 2*x^2 - 4*x
 <type 'sage.symbolic.expression.Expression'>
 }}}
 And

 {{{
 M = matrix(SR,[[1,2],[0,-2]])
 ch = M.charpoly()
 print(ch)
 type(ch)
 }}}
 gives

 {{{
 x^2 + x - 2
 <class
 
'sage.rings.polynomial.polynomial_element_generic.Polynomial_generic_dense_field'>
 }}}
 But:

 {{{
 y.coeffs()
 }}}
 returns

 {{{
 [[−4,1],[2,2],[3,3]]
 }}}
 and

 {{{
 ch.coeffs()
 }}}
 returns

 {{{
 [−2,1,1]
 }}}

 I'd prefer if these two functions returned the same format, preferably the
 Expression format, as having access to the index allows list comprehension
 tastiness.

--

Comment (by rws):

 Clarified the ticket description.

--
Ticket URL: <http://trac.sagemath.org/ticket/17922#comment:4>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to