#17282: Implementing Wehler K3 Surfaces
-------------------------------------+-------------------------------------
Reporter: jdefaria | Owner:
Type: enhancement | Status: needs_work
Priority: major | Milestone: sage-6.7
Component: algebraic | Resolution:
geometry | Merged in:
Keywords: | Reviewers: Ben Hutz, Grayson
Authors: Joao Alberto de | Jorgenson
Faria | Work issues:
Report Upstream: N/A | Commit:
Branch: | 33c3109a3856aa468da5d2fb0fc14aaf9b62283e
u/jdefaria/ticket/17282 | Stopgaps:
Dependencies: |
-------------------------------------+-------------------------------------
Changes (by bhutz):
* status: needs_review => needs_work
* milestone: sage-6.6 => sage-6.7
Comment:
Getting closer so I did a more thorough functionality testing:
* line 2224 note that it is an example of an "asymmetric 8-cycle with
points on degenerate fibers"
* degenerate_fibers seems to be failing for Qp
{{{
R.<x0,x1,x2,y0,y1,y2>=!PolynomialRing(Qp(3, 300),6)
Y=x0*y0+x1*y1-x2*y2
Z=x0!^2*y0*y1 + x0!^2*y2!^2 - x0*x1*y1*y2 + x1!^2*y2*y1 +x2!^2*y2!^2 +
x2!^2*y1!^2 +x1!^2*y2!^2
X=WehlerK3Surface([Z,Y])
print X.is_degenerate()
X.degenerate_fibers()
}}}
* Here is another interesting example you can include
{{{
R.<x0,x1,x2,y0,y1,y2>=!PolynomialRing(QQ,6)
L= (-y0 - y1)*x0 + (-y0*x1 - y2*x2)
Q=(-y2*y0 - y1!^2)*x0!^2 + ((-y0!^2 - y2*y0 + (-y2*y1 - y2!^2))*x1 +
(-y0!^2 - y2*y1)*x2)*x0 + ((-y0!^2 - y2*y0 - y2!^2)*x1!^2 + (-y2*y0 -
y1!^2)*x2*x1 + (-y0!^2 + (-y1 - y2)*y0)*x2!^2)
X=WehlerK3Surface([L,Q])
P=X([1,0,-1,1,-1,0]) #order 16
X.nth_iterate_phi(P,8) == X.nth_iterate_psi(P,8)
}}}
* here is a failure in sigmaY (degenerate)
{{{
PP.<x0,x1,x2,y0,y1,y2>=!ProductProjectiveSpaces([2,2],GF(3))
l=x0*y0 + x1*y1 + x2*y2
q=-3*x0!^2*y0!^2 + 4*x0*x1*y0!^2 - 3*x0*x2*y0!^2 - 5*x0!^2*y0*y1 -
190*x0*x1*y0*y1 - 5*x1!^2*y0*y1 + 5*x0*x2*y0*y1 + 14*x1*x2*y0*y1 +
5*x2!^2*y0*y1 - x0!^2*y1!^2 - 6*x0*x1*y1!^2 - 2*x1!^2*y1!^2 +
2*x0*x2*y1!^2 - 4*x2!^2*y1!^2 + 4*x0!^2*y0*y2 - x1!^2*y0*y2 +
3*x0*x2*y0*y2 + 6*x1*x2*y0*y2 - 6*x0!^2*y1*y2 - 4*x0*x1*y1*y2 -
x1!^2*y1*y2 + 51*x0*x2*y1*y2 - 7*x1*x2*y1*y2 - 9*x2!^2*y1*y2 - x0!^2*y2!^2
- 4*x0*x1*y2!^2 + 4*x1!^2*y2!^2 - x0*x2*y2!^2 + 13*x1*x2*y2!^2 -
x2!^2*y2!^2
X=WehlerK3Surface([l,q])
print X.degenerate_fibers()
P=X([0,1,1,1,0,0])
print P
print X.sigmaY(P)
X.sigmaY(X.sigmaY(P))
}}}
* degenerate primes should return NotImplementedError instead of
TypeError
{{{
TypeError: Must be ZZ or QQ
}}}
* you have a couple --long test failures due to a lack of
{{{
set_verbose(None)
}}}
--
Ticket URL: <http://trac.sagemath.org/ticket/17282#comment:17>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.