#6964: implement computation of Dirichlet character of irreducible cuspidal
modular symbols space
---------------------+------------------------------------------------------
Reporter: was | Owner: tbd
Type: defect | Status: new
Priority: major | Milestone: sage-4.1.2
Component: algebra | Keywords:
Reviewer: | Author:
Merged: |
---------------------+------------------------------------------------------
Implement this function q_eigenform_character described below:
{{{
sage: f =
ModularSymbols(Gamma1(13),2,sign=1).cuspidal_subspace().decomposition()[0]
sage: f.q_eigenform(5,'a')
q + a*q^2 + (-2*a - 4)*q^3 + (-a - 1)*q^4 + O(q^5)
sage: f.q_eigenform_character('a')
Traceback (most recent call last):
...
AttributeError: 'ModularSymbolsSubspace' object has no attribute
'q_eigenform_character'
}}}
In case f.character() is not None, the above function should be easy to
implement -- just return the character. Otherwise it is harder.
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/6964>
Sage <http://sagemath.org/>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to
[email protected]
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---