#19545: Mathon's pseudocylic strongly regular graphs.
-------------------------+-------------------------------------------------
Reporter: | Owner:
dimpase | Status: new
Type: | Milestone: sage-6.10
enhancement | Resolution:
Priority: major | Merged in:
Component: graph | Reviewers:
theory | Work issues:
Keywords: | Commit:
Authors: Dima | af1af3242be804d31bf81ecc0db94f7378b0f152
Pasechnik | Stopgaps:
Report Upstream: N/A |
Branch: |
u/dimpase/matpc |
Dependencies: |
-------------------------+-------------------------------------------------
Changes (by dimpase):
* commit: => af1af3242be804d31bf81ecc0db94f7378b0f152
* branch: => u/dimpase/matpc
Old description:
> Implement a construction by Mathon of s.r.g's with parameters
> `((4t+1)(4t-1)^2, 2t(4t(4t-1)-1), t(4t(4t-1)-1)-1, t(4t(4t-1)-1))` given
> that
> `4t-1` is a prime power and there exists an s.r.g. with parameters
> `(4t+1,2t,t-1,t)` from
>
> R. A. Mathon,
> Symmetric conference matrices of order `pq^2 + 1`,
> Canad. J. Math. 30 (1978) 321-331
New description:
Implement a construction by Mathon of s.r.g's with parameters
`((4t+1)(4t-1)^2, 2t(4t(4t-1)-1), t(4t(4t-1)-1)-1, t(4t(4t-1)-1))` given
that
`4t-1` is a prime power and there exists an s.r.g. with parameters
`(4t+1,2t,t-1,t)` from
R. A. Mathon, Symmetric conference matrices of order `pq^2 + 1`, Canad. J.
Math. 30 (1978) 321-331
--
Comment:
New commits:
||[http://git.sagemath.org/sage.git/commit/?id=af1af3242be804d31bf81ecc0db94f7378b0f152
af1af32]||{{{construction implemented, and it works!}}}||
--
Ticket URL: <http://trac.sagemath.org/ticket/19545#comment:1>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.