#19532: asymptotic expansion generators related to singularity analysis
-------------------------------------+-------------------------------------
       Reporter:  dkrenn             |        Owner:
           Type:  enhancement        |       Status:  needs_info
       Priority:  major              |    Milestone:  sage-7.1
      Component:  asymptotic         |   Resolution:
  expansions                         |    Merged in:
       Keywords:                     |    Reviewers:  Clemens Heuberger
        Authors:  Daniel Krenn       |  Work issues:
Report Upstream:  N/A                |       Commit:
         Branch:  u/cheuberg/asy     |  f38cdfc7f03ff9c88d299080debd4700b9805538
  /singularity-analysis-generator    |     Stopgaps:
   Dependencies:  #19437, #19510,    |
  #19576                             |
-------------------------------------+-------------------------------------

Comment (by dkrenn):

 Replying to [comment:18 cheuberg]:
 > What would `O(0)` mean?

 `f(n)` is in `O(0)` if there is an `N` such that `f(n)=0` for `n >= N`.
 Thus the coefficients of polynomials (seen as power series) would be in
 `O(0)`.

 > How would that affect #19944?

 E.g. inserting the generating function `(1-z)^alpha` for non-negative
 integers `alpha` would result in a `O(0)`, but this behavior comes from
 this ticket here. I am not sure if #19944 would need adaptions.

--
Ticket URL: <http://trac.sagemath.org/ticket/19532#comment:19>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to