#20249: Tate-Shafarevich group should use Skinner-Urban to determien the order
of
the p-primary part
-------------------------------------+-------------------------------------
Reporter: aly.deines | Owner:
Type: enhancement | Status: needs_review
Priority: minor | Milestone: sage-7.2
Component: elliptic curves | Resolution:
Keywords: p-adic, | Merged in:
L-function, Iwasawa Theory, | Reviewers:
days71 | Work issues:
Authors: Aly Deines, Chris | Commit:
Wuthrich | 5df7bc156b6f0cfa5b7e3bc71234bd1b4b369d60
Report Upstream: N/A | Stopgaps:
Branch: |
u/wuthrich/ticket/20249 |
Dependencies: #20254 |
-------------------------------------+-------------------------------------
Changes (by {'newvalue': u'Aly Deines, Chris Wuthrich', 'oldvalue': u'Aly
Deines,'}):
* status: needs_work => needs_review
* author: Aly Deines, => Aly Deines, Chris Wuthrich
* component: padics => elliptic curves
* dependencies: => #20254
* branch: u/aly.deines/ticket/20249 => u/wuthrich/ticket/20249
* commit: ac64bf6b5f5cea91163047c45ace6886bca6ca57 =>
5df7bc156b6f0cfa5b7e3bc71234bd1b4b369d60
Old description:
> Adds a function that checks the two conditions necessary for Skinner-
> Urban, that the residual Galois representation is surjective and the
> existance of an auxillary prime.
New description:
Adds a function a function to Tate-Shafarevich groups that returns the
order of the p-primary part. This is done by checking that the necessary
conditions necessary in the work of Skinner-Urban on teh main conjecture
in Iwasawa theory are satisfied.
--
Comment:
I have rewritten this ticket. It was not checked if the reduction at p is
good ordinary. Also the condition at the auxiliary prime was exactly the
opposite of what it should be.
Anyway, this is now ready.
To avoid the possibility of conflicts, I have put this on top of #20254
and set that as a dependency.
----
New commits:
||[http://git.sagemath.org/sage.git/commit/?id=9f6b4e88268b081ca534671af96a2c182ef466d7
9f6b4e8]||{{{trac 20254: changing supersingular p-adic L-series to use
Eisenstein p-adics rather than quotient rings}}}||
||[http://git.sagemath.org/sage.git/commit/?id=7d1232cb9d9c714e5db7640ad226fa2b96b24df8
7d1232c]||{{{trac 20254 : correcting the normalisation of negative modular
symbols}}}||
||[http://git.sagemath.org/sage.git/commit/?id=45297356bc88459869d18fc16f2acee7bff60131
4529735]||{{{trac 20254: some doctests adjustments}}}||
||[http://git.sagemath.org/sage.git/commit/?id=6677b7b4a3b71e6ac2918c3aaff7726d4f98815d
6677b7b]||{{{trac 20254: further small adjustments to twists in padic
lseries}}}||
||[http://git.sagemath.org/sage.git/commit/?id=139514fd2640fc668f0ccb1af8f8c08dc58ebe4e
139514f]||{{{Merge branch 'develop' into oxford}}}||
||[http://git.sagemath.org/sage.git/commit/?id=1a7a261042df5cf6e0442612527fa7c6664928af
1a7a261]||{{{trac 20254: correcting small errors}}}||
||[http://git.sagemath.org/sage.git/commit/?id=a265fc0f458017a32e6a923b836901a8baaaf3c0
a265fc0]||{{{trac 20254: final doctests adjustments}}}||
||[http://git.sagemath.org/sage.git/commit/?id=5df7bc156b6f0cfa5b7e3bc71234bd1b4b369d60
5df7bc1]||{{{trac 20249: add p-primary part to sha}}}||
--
Ticket URL: <http://trac.sagemath.org/ticket/20249#comment:11>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.