#17753: move pexpect-maxima code to maxima_lib
-------------------------------+-----------------------------
       Reporter:  rws          |        Owner:
           Type:  enhancement  |       Status:  new
       Priority:  major        |    Milestone:  sage-wishlist
      Component:  interfaces   |   Resolution:
       Keywords:               |    Merged in:
        Authors:               |    Reviewers:
Report Upstream:  N/A          |  Work issues:
         Branch:               |       Commit:
   Dependencies:               |     Stopgaps:
-------------------------------+-----------------------------
Description changed by rws:

Old description:

> This metaticket tracks efforts to remove the usage of pexpect for calling
> maxima, either by using `maxima_lib` or replacing it altogether. Code
> that is dependent on the maxima expect interface is in:
>
>  * ''`calculus/desolvers.py`'': `desolve_*()`
>  * ''`combinat/combinat.py`'': `euler_number()` (see #17770 and #20763)
>  * ''`geometry/lattice_polytope.py`'': `positive_integer_relations()`
> #20766
>  * ''`functions/orthogonal_polys.py`'': `hermite()` (#20297),
> `jacobi_P()`, `laguerre()` (#17151), `legendre_P/Q()` (#16813),
> `ultraspherical()` (#20428)
>  * ''`functions/piecewise.py`'': `piecewise.convolution()`
>  * ''`matrix/matrix1.pyx`'': `Matrix._maxima_init_()`
>  * ''`matrix/matrix_symbolic_dense.pyx`'': `Matrix_symbolic_dense.exp()`
>  * ''`structure/sage_object.pyx`'': `SageObject._maxima_()`,
> `_maxima_init_()`
>  * ''`symbolic/assumptions.py`'': `GenericDeclaration.assume()`
>  * ''`symbolic/expression.pyx`'': `Ex.assume()`, `forget()`,
> `assume_str()`, `assert()`, `expand_trig()`, `reduce_trig()`,
> `coefficients()` and `poly()` (both #20455), `maxima_methods()`,
> `rectform()`, `simplify()`, `simplify_real()`, `simplify_rational()`,
> `simplify_log()`, `expand_log()`, `factor()`, `solve()`, `sum()`
>  * ''`symbolic/maxima_wrapper.py`'': *
>
> This can be considered part of the metaticket #16688. See also
> http://trac.sagemath.org/wiki/symbolics/maxima

New description:

 This metaticket tracks efforts to remove the usage of pexpect for calling
 maxima, either by using `maxima_lib` or replacing it altogether. Code that
 is dependent on the maxima expect interface is in:

  * ''`calculus/desolvers.py`'': `desolve_*()`
  * ''`combinat/combinat.py`'': `euler_number()` (see #17770 and #20763)
  * ''`geometry/lattice_polytope.py`'': `positive_integer_relations()`
 #20766
  * ''`functions/orthogonal_polys.py`'': `hermite()` (#20297),
 `jacobi_P()`, `laguerre()` (#17151), `legendre_P/Q()` (#16813),
 `ultraspherical()` (#20428)
  * ''`functions/piecewise.py`'': `piecewise.convolution()`
  * ''`functions/special.py`'': `SphericalHarmonic._eval_()` (#20939)
  * ''`matrix/matrix1.pyx`'': `Matrix._maxima_init_()`
  * ''`matrix/matrix_symbolic_dense.pyx`'': `Matrix_symbolic_dense.exp()`
  * ''`structure/sage_object.pyx`'': `SageObject._maxima_()`,
 `_maxima_init_()`
  * ''`symbolic/assumptions.py`'': `GenericDeclaration.assume()`
  * ''`symbolic/expression.pyx`'': `Ex.assume()`, `forget()`,
 `assume_str()`, `assert()`, `expand_trig()`, `reduce_trig()`,
 `coefficients()` and `poly()` (both #20455), `maxima_methods()`,
 `rectform()`, `simplify()`, `simplify_real()`, `simplify_rational()`,
 `simplify_log()`, `expand_log()`, `factor()`, `solve()`, `sum()`
  * ''`symbolic/maxima_wrapper.py`'': *

 This can be considered part of the metaticket #16688. See also
 http://trac.sagemath.org/wiki/symbolics/maxima

--

--
Ticket URL: <https://trac.sagemath.org/ticket/17753#comment:8>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to