#8054: roots(algorithm='numpy') does not work in arbitrary precision
-------------------------+--------------------------------------------------
   Reporter:  zimmerma   |       Owner:  jkantor   
       Type:  defect     |      Status:  new       
   Priority:  major      |   Milestone:  sage-4.3.2
  Component:  numerical  |    Keywords:            
     Author:             |    Upstream:  N/A       
   Reviewer:             |      Merged:            
Work_issues:             |  
-------------------------+--------------------------------------------------
 Consider the following example:
 {{{
 sage: R.<x> = PolynomialRing(ComplexField(3322))
 sage: p=x^4+54*x^2+154
 sage: z=p.roots(algorithm='pari')
 sage: e=p-mul([x-z[i][0] for i in range(4)])
 sage: n(max(abs(e.coeffs()[i]) for i in range(0,e.degree()+1)))
 6.08883742371831e-999
 }}}
 This is ok. Compare now with:
 {{{
 sage: R.<x> = PolynomialRing(ComplexField(3322))
 sage: p=x^4+54*x^2+154
 sage: z=p.roots(algorithm='numpy')
 sage: e=p-mul([x-z[i][0] for i in range(4)])
 sage: n(max(abs(e.coeffs()[i]) for i in range(0,e.degree()+1)))
 6.06533797844328e-14
 }}}
 Clearly the precision given by numpy is only 14 digits, not 1000
 digits as expected.

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/8054>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en.

Reply via email to