#9182: Jacobian of a Hyperelliptic curve doesn't coerces correctly
-----------------------------+----------------------------------------------
   Reporter:  aly.deines     |       Owner:  AlexGhitza                
       Type:  defect         |      Status:  new                       
   Priority:  trivial        |   Milestone:                            
  Component:  algebra        |    Keywords:  Point, Hyperelliptic curve
     Author:  Alyson Deines  |    Upstream:  N/A                       
   Reviewer:                 |      Merged:                            
Work_issues:                 |  
-----------------------------+----------------------------------------------
 When defining a point on the Jacobian of a Hyperellptic curve,
 if a coordinate is an integer, it does not get coerced to polynomial and
 the following error raised:
 raise TypeError, "Argument P (= %s) must have length 2."%P
 For example:
 {{{
 sage: F.<a> = GF(3)
 sage: R.<x> = F[]
 sage: f = x^5-1
 sage: C = HyperellipticCurve(f)
 sage: J = C.jacobian()
 sage: X = J(F)
 sage: a = x^2-x+1
 sage: b = -x +1
 sage: c = x-1
 sage: d = 0
 sage: D1 = X([a,b])
 sage: D2 = X([c,d])
 ---------------------------------------------------------------------------
 TypeError                                 Traceback (most recent call
 last)

 /home/aly/Desktop/sage-4.3.1/<ipython console> in <module>()

 /home/aly/Desktop/sage-4.3.1/local/lib/python2.6/site-
 packages/sage/schemes/hyperelliptic_curves/jacobian_homset.py in
 __call__(self, P)
      86                 if is_SchemeMorphism(P1) and
 is_SchemeMorphism(P2):
      87                     return self(P1) - self(P2)
 ---> 88             raise TypeError, "Argument P (= %s) must have length
 2."%P
      89         elif isinstance(P,JacobianMorphism_divisor_class_field)
 and self == P.parent():
      90             return P

 TypeError: Argument P (= [x + 2, 0]) must have length 2.
 sage: D2 = X([c,R(d)])
 sage: D2
 (x + 2, y)


 }}}

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/9182>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en.

Reply via email to