#9182: Jacobian of a Hyperelliptic curve doesn't coerces correctly
-----------------------------+----------------------------------------------
Reporter: aly.deines | Owner: AlexGhitza
Type: defect | Status: new
Priority: trivial | Milestone:
Component: algebra | Keywords: Point, Hyperelliptic curve
Author: Alyson Deines | Upstream: N/A
Reviewer: | Merged:
Work_issues: |
-----------------------------+----------------------------------------------
When defining a point on the Jacobian of a Hyperellptic curve,
if a coordinate is an integer, it does not get coerced to polynomial and
the following error raised:
raise TypeError, "Argument P (= %s) must have length 2."%P
For example:
{{{
sage: F.<a> = GF(3)
sage: R.<x> = F[]
sage: f = x^5-1
sage: C = HyperellipticCurve(f)
sage: J = C.jacobian()
sage: X = J(F)
sage: a = x^2-x+1
sage: b = -x +1
sage: c = x-1
sage: d = 0
sage: D1 = X([a,b])
sage: D2 = X([c,d])
---------------------------------------------------------------------------
TypeError Traceback (most recent call
last)
/home/aly/Desktop/sage-4.3.1/<ipython console> in <module>()
/home/aly/Desktop/sage-4.3.1/local/lib/python2.6/site-
packages/sage/schemes/hyperelliptic_curves/jacobian_homset.py in
__call__(self, P)
86 if is_SchemeMorphism(P1) and
is_SchemeMorphism(P2):
87 return self(P1) - self(P2)
---> 88 raise TypeError, "Argument P (= %s) must have length
2."%P
89 elif isinstance(P,JacobianMorphism_divisor_class_field)
and self == P.parent():
90 return P
TypeError: Argument P (= [x + 2, 0]) must have length 2.
sage: D2 = X([c,R(d)])
sage: D2
(x + 2, y)
}}}
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/9182>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to
[email protected].
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en.