#9500: implement inversion of elements in a (more) general quotient ring
---------------------------+------------------------------------------------
Reporter: was | Owner: AlexGhitza
Type: enhancement | Status: new
Priority: major | Milestone: sage-4.5.1
Component: algebra | Keywords:
Author: | Upstream: N/A
Reviewer: | Merged:
Work_issues: |
---------------------------+------------------------------------------------
Description changed by was:
Old description:
> Make this work:
>
> {{{
>
> sage: R.<x,y> = QQ[]
> sage: I = R.ideal([x^2 + 1, y^3 - 2])
> sage: S.<i,cuberoot> = R.quotient(I)
> sage: 1/(1+i)
> -1/2*i + 1/2
>
> Confirm via symbolic computation::
>
> sage: 1/(1+sqrt(-1))
> -1/2*I + 1/2
>
> Another more complicated quotient::
>
> sage: b = 1/(i+cuberoot); b
> 1/5*i*cuberoot^2 - 2/5*i*cuberoot + 2/5*cuberoot^2 - 1/5*i +
> 1/5*cuberoot - 2/5
> sage: b*(i+cuberoot)
> 1
> }}}
New description:
*** This ticket depends on #9499 ***
Make this work:
{{{
sage: R.<x,y> = QQ[]
sage: I = R.ideal([x^2 + 1, y^3 - 2])
sage: S.<i,cuberoot> = R.quotient(I)
sage: 1/(1+i)
-1/2*i + 1/2
Confirm via symbolic computation::
sage: 1/(1+sqrt(-1))
-1/2*I + 1/2
Another more complicated quotient::
sage: b = 1/(i+cuberoot); b
1/5*i*cuberoot^2 - 2/5*i*cuberoot + 2/5*cuberoot^2 - 1/5*i +
1/5*cuberoot - 2/5
sage: b*(i+cuberoot)
1
}}}
--
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/9500#comment:2>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to
[email protected].
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en.