#9500: implement inversion of elements in a (more) general quotient ring
---------------------------+------------------------------------------------
   Reporter:  was          |       Owner:  AlexGhitza
       Type:  enhancement  |      Status:  new       
   Priority:  major        |   Milestone:  sage-4.5.1
  Component:  algebra      |    Keywords:            
     Author:               |    Upstream:  N/A       
   Reviewer:               |      Merged:            
Work_issues:               |  
---------------------------+------------------------------------------------
Description changed by was:

Old description:

> Make this work:
>
> {{{
>
>             sage: R.<x,y> = QQ[]
>             sage: I = R.ideal([x^2 + 1, y^3 - 2])
>             sage: S.<i,cuberoot> = R.quotient(I)
>             sage: 1/(1+i)
>             -1/2*i + 1/2
>
>         Confirm via symbolic computation::
>
>             sage: 1/(1+sqrt(-1))
>             -1/2*I + 1/2
>
>         Another more complicated quotient::
>
>             sage: b = 1/(i+cuberoot); b
>             1/5*i*cuberoot^2 - 2/5*i*cuberoot + 2/5*cuberoot^2 - 1/5*i +
> 1/5*cuberoot - 2/5
>             sage: b*(i+cuberoot)
>             1
> }}}

New description:

 ***   This ticket depends on #9499    ***

 Make this work:

 {{{

             sage: R.<x,y> = QQ[]
             sage: I = R.ideal([x^2 + 1, y^3 - 2])
             sage: S.<i,cuberoot> = R.quotient(I)
             sage: 1/(1+i)
             -1/2*i + 1/2

         Confirm via symbolic computation::

             sage: 1/(1+sqrt(-1))
             -1/2*I + 1/2

         Another more complicated quotient::

             sage: b = 1/(i+cuberoot); b
             1/5*i*cuberoot^2 - 2/5*i*cuberoot + 2/5*cuberoot^2 - 1/5*i +
 1/5*cuberoot - 2/5
             sage: b*(i+cuberoot)
             1
 }}}

--

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/9500#comment:2>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en.

Reply via email to