Hi Riley

On Thu, Aug 3, 2017, at 14:31, Riley Myers wrote:
> I'm currently using matplotlib 2.0.2, which seems to be the most
> recent that I can get with `conda install` or `conda> update`. Should I take 
> this up with their development team instead?
> 
> As before:
> >>> import matplotlib print(matplotlib.__version__)
> 2..2
The error does seem to result in a change between skimage 0.13
and 0.14dev0.
Here is the relevant patch:

commit dcec9cdfd630f555216eb4105652fceb0f943dac
Author: Gregory R. Lee <grle...@gmail.com>
Date:   Fri May 5 08:53:30 2017 -0400

    BUG: make the color array in plot_matches 1D
    
    Using a 2D array is unecessary and causes a crash for
    Matplotlib 2.0.1
diff --git a/skimage/feature/util.py b/skimage/feature/util.py
index b0c66986..fdb1b67e 100644
--- a/skimage/feature/util.py
+++ b/skimage/feature/util.py
@@ -114,7 +114,7 @@ def plot_matches(ax, image1, image2, keypoints1,
keypoints2, matches,         idx2 = matches[i, 1]
 
         if matches_color is None:
-            color = np.random.rand(3, 1)
+            color = np.random.rand(3)
         else:
             color = matches_color


Your options are:

1. Use the attached version of plot_matches or
2. to upgrade to the source version of scikit-image

Best regards
Stéfan
import numpy as np
import matplotlib.pyplot as plt

from skimage import io, img_as_float
from skimage.color import rgb2gray
from skimage.feature import ORB, match_descriptors


def plot_matches(ax, image1, image2, keypoints1, keypoints2, matches,
                 keypoints_color='k', matches_color=None, only_matches=False):
    """Plot matched features.

    Parameters
    ----------
    ax : matplotlib.axes.Axes
        Matches and image are drawn in this ax.
    image1 : (N, M [, 3]) array
        First grayscale or color image.
    image2 : (N, M [, 3]) array
        Second grayscale or color image.
    keypoints1 : (K1, 2) array
        First keypoint coordinates as ``(row, col)``.
    keypoints2 : (K2, 2) array
        Second keypoint coordinates as ``(row, col)``.
    matches : (Q, 2) array
        Indices of corresponding matches in first and second set of
        descriptors, where ``matches[:, 0]`` denote the indices in the first
        and ``matches[:, 1]`` the indices in the second set of descriptors.
    keypoints_color : matplotlib color, optional
        Color for keypoint locations.
    matches_color : matplotlib color, optional
        Color for lines which connect keypoint matches. By default the
        color is chosen randomly.
    only_matches : bool, optional
        Whether to only plot matches and not plot the keypoint locations.

    """

    image1 = img_as_float(image1)
    image2 = img_as_float(image2)

    new_shape1 = list(image1.shape)
    new_shape2 = list(image2.shape)

    if image1.shape[0] < image2.shape[0]:
        new_shape1[0] = image2.shape[0]
    elif image1.shape[0] > image2.shape[0]:
        new_shape2[0] = image1.shape[0]

    if image1.shape[1] < image2.shape[1]:
        new_shape1[1] = image2.shape[1]
    elif image1.shape[1] > image2.shape[1]:
        new_shape2[1] = image1.shape[1]

    if new_shape1 != image1.shape:
        new_image1 = np.zeros(new_shape1, dtype=image1.dtype)
        new_image1[:image1.shape[0], :image1.shape[1]] = image1
        image1 = new_image1

    if new_shape2 != image2.shape:
        new_image2 = np.zeros(new_shape2, dtype=image2.dtype)
        new_image2[:image2.shape[0], :image2.shape[1]] = image2
        image2 = new_image2

    image = np.concatenate([image1, image2], axis=1)

    offset = image1.shape

    if not only_matches:
        ax.scatter(keypoints1[:, 1], keypoints1[:, 0],
                   facecolors='none', edgecolors=keypoints_color)
        ax.scatter(keypoints2[:, 1] + offset[1], keypoints2[:, 0],
                   facecolors='none', edgecolors=keypoints_color)

    ax.imshow(image, interpolation='nearest', cmap='gray')
    ax.axis((0, 2 * offset[1], offset[0], 0))

    for i in range(matches.shape[0]):
        idx1 = matches[i, 0]
        idx2 = matches[i, 1]

        if matches_color is None:
            color = np.random.rand(3)
        else:
            color = matches_color

        ax.plot((keypoints1[idx1, 1], keypoints2[idx2, 1] + offset[1]),
                (keypoints1[idx1, 0], keypoints2[idx2, 0]),
                '-', color=color)


pano_imgs = io.ImageCollection('./JDW_9*')

# Make grayscale versions of the three color images in pano_imgs
# named pano0, pano1, and pano2
p0 = rgb2gray(pano_imgs[0])
p1 = rgb2gray(pano_imgs[1])
p2 = rgb2gray(pano_imgs[2])


# Initialize ORB
orb = ORB(n_keypoints=800, fast_threshold=0.05)

# Detect keypoints in pano0
orb.detect_and_extract(p0)
keypoints0 = orb.keypoints
descriptors0 = orb.descriptors

# Detect keypoints in pano1 and pano2
orb.detect_and_extract(p1)
keypoints1 = orb.keypoints
descriptors1 = orb.descriptors

orb.detect_and_extract(p2)
keypoints2 = orb.keypoints
descriptors2 = orb.descriptors


# Match descriptors between left/right images and the center
matches01 = match_descriptors(descriptors0, descriptors1, cross_check=True)
matches12 = match_descriptors(descriptors1, descriptors2, cross_check=True)

fig, ax = plt.subplots(1, 1, figsize=(12, 12))
# Best match subset for pano0 -> pano1
plot_matches(ax, p0, p1, keypoints0, keypoints1, matches01)
ax.axis('off');
plt.show()
_______________________________________________
scikit-image mailing list
scikit-image@python.org
https://mail.python.org/mailman/listinfo/scikit-image

Reply via email to