svm.SVC use LibSVM under the hood. So you can take a look at the document
of LibSVM. It might be produced using Platt's calibration method, but I am
not sure.
On Mon, Jan 16, 2012 at 12:40 AM, traveller3141 <[email protected]>wrote:
> sklearn.svm.SVC has a parameter probability, which enables
> 'probability' estimates.
>
> How are these estimates calculated (% Right during training?
> Similarity to training data?) ?
> Thanks,
> Steven
>
>
> ------------------------------------------------------------------------------
> RSA(R) Conference 2012
> Mar 27 - Feb 2
> Save $400 by Jan. 27
> Register now!
> http://p.sf.net/sfu/rsa-sfdev2dev2
> _______________________________________________
> Scikit-learn-general mailing list
> [email protected]
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
--
Best Wishes
--------------------------------------------
Meng Xinfan(蒙新泛)
Institute of Computational Linguistics
Department of Computer Science & Technology
School of Electronic Engineering & Computer Science
Peking University
Beijing, 100871
China
------------------------------------------------------------------------------
Keep Your Developer Skills Current with LearnDevNow!
The most comprehensive online learning library for Microsoft developers
is just $99.99! Visual Studio, SharePoint, SQL - plus HTML5, CSS3, MVC3,
Metro Style Apps, more. Free future releases when you subscribe now!
http://p.sf.net/sfu/learndevnow-d2d
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general