Hi everyone,

I am trying to use the SGDRegressor to solve for a sparse set of
linear equations. I am getting an under/over-flow error (see below).

Running master from github from this morning on Fedora 14.

Any ideas?

Thanks!

Ariel

In [30]: X
Out[30]:
<533100x18788 sparse matrix of type '<type 'numpy.float64'>'
        with 52124700 stored elements in Compressed Sparse Column format>

In [31]: y
Out[31]: array([  4.1 ,  42.1 ,  14.1 , ...,  11.82, -11.18,  25.82])

In [32]: y.shape
Out[32]: (533100,)

In [33]: from sklearn.linear_model import SGDRegressor as SGD

In [34]: S1 = SGD()

In [35]: S1.fit(X,y)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
/white/u6/arokem/<ipython-input-35-1ebf5d8bf9f4> in <module>()
----> 1 S1.fit(X,y)

/home/arokem/usr/local/lib64/python2.7/site-packages/scikit_learn-0.11_git-py2.7-linux-x86_64.egg/sklearn/linear_model/stochastic_gradient.pyc
in fit(self, X, y, coef_init, intercept_init, sample_weight)
    705
    706         return self._partial_fit(X, y, self.n_iter, sample_weight,
--> 707                                  coef_init, intercept_init)
    708
    709     def decision_function(self, X):

/home/arokem/usr/local/lib64/python2.7/site-packages/scikit_learn-0.11_git-py2.7-linux-x86_64.egg/sklearn/linear_model/stochastic_gradient.pyc
in _partial_fit(self, X, y, n_iter, sample_weight, coef_init,
intercept_init)
    640                                          coef_init, intercept_init)
    641
--> 642         self._fit_regressor(X, y, sample_weight, n_iter)
    643
    644         self.t_ += n_iter * n_samples

/home/arokem/usr/local/lib64/python2.7/site-packages/scikit_learn-0.11_git-py2.7-linux-x86_64.egg/sklearn/linear_model/stochastic_gradient.pyc
in _fit_regressor(self, X, y, sample_weight, n_iter)
    754                                           self.learning_rate_code,
    755                                           self.eta0,
self.power_t, self.t_,
--> 756                                           intercept_decay)
    757
    758         self.intercept_ = np.atleast_1d(intercept)

/home/arokem/usr/local/lib64/python2.7/site-packages/scikit_learn-0.11_git-py2.7-linux-x86_64.egg/sklearn/linear_model/sgd_fast.so
in sklearn.linear_model.sgd_fast.plain_sgd
(sklearn/linear_model/sgd_fast.c:6164)()

ValueError: floating-point under-/overflow occured.

------------------------------------------------------------------------------
Live Security Virtual Conference
Exclusive live event will cover all the ways today's security and 
threat landscape has changed and how IT managers can respond. Discussions 
will include endpoint security, mobile security and the latest in malware 
threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to