e if it's related to IDF normalization?
> 
> How many dimensions do you have in your fitted model?
> 
> >>> print len(vectorizer.vocabulary_)
> 
> How many documents do you have in your training corpus?
> 
> How many non-zeros do you have in your transformed document?
> 
> >>> print vectorizer.transform([my_text_document])


In [30]: print vectorizer.transform([input_txt]).data.shape
(110,)


------------------------------------------------------------------------------
Everyone hates slow websites. So do we.
Make your web apps faster with AppDynamics
Download AppDynamics Lite for free today:
http://p.sf.net/sfu/appdyn_sfd2d_oct
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to