I think that I have to re-phrase my post, since I discovered an awkward behavior using SVC and the linear kernel - exactly THIS kernel takes ages on my dataset.
E.g. the "RBF" kernel runs perfect, and so does the GridSearch! :) Exclusion of the "linear" kernel from GridSearch gives now the following: " # Tuning hyper-parameters for precision Best parameters set found on development set: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel=rbf, probability=False, shrinking=True, tol=0.001, verbose=False) Grid scores on development set: 0.000 (+/-0.000) for {'kernel': 'rbf', 'C': 1} 0.000 (+/-0.000) for {'kernel': 'rbf', 'C': 10} 0.000 (+/-0.000) for {'kernel': 'rbf', 'C': 100} 0.000 (+/-0.000) for {'kernel': 'rbf', 'C': 1000} 0.000 (+/-0.000) for {'kernel': 'sigmoid', 'C': 1} 0.000 (+/-0.000) for {'kernel': 'sigmoid', 'C': 10} 0.000 (+/-0.000) for {'kernel': 'sigmoid', 'C': 100} 0.000 (+/-0.000) for {'kernel': 'sigmoid', 'C': 1000} # Tuning hyper-parameters for recall Best parameters set found on development set: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel=rbf, probability=False, shrinking=True, tol=0.001, verbose=False) Grid scores on development set: 0.000 (+/-0.000) for {'kernel': 'rbf', 'C': 1} 0.000 (+/-0.000) for {'kernel': 'rbf', 'C': 10} 0.000 (+/-0.000) for {'kernel': 'rbf', 'C': 100} 0.000 (+/-0.000) for {'kernel': 'rbf', 'C': 1000} 0.000 (+/-0.000) for {'kernel': 'sigmoid', 'C': 1} 0.000 (+/-0.000) for {'kernel': 'sigmoid', 'C': 10} 0.000 (+/-0.000) for {'kernel': 'sigmoid', 'C': 100} 0.000 (+/-0.000) for {'kernel': 'sigmoid', 'C': 1000} " by using this code " tuned_parameters = [{'kernel': ['rbf'],'C': [1,10,100,1000]}, {'kernel': ['sigmoid'],'C': [1,10,100,1000]}] scores = [('precision', precision_score),('recall', recall_score)] for score_name, score_func in scores: print "# Tuning hyper-parameters for %s" % score_name print clf = GridSearchCV(SVC(C=1), tuned_parameters, score_func=score_func,n_jobs=1) clf.fit(trainDescrs, trainActs, cv=5,n_jobs=1) print "Best parameters set found on development set:" print print clf.best_estimator_ print print "Grid scores on development set:" print for params, mean_score, scores in clf.grid_scores_: print "%0.3f (+/-%0.03f) for %r" % ( mean_score, scores.std() / 2, params) print " Question: Bad statistics - am I outputting anything wrong? Apologies: Sorry guys to have mis-lead with my first posting. Hopefully I have not discourage anyone from further answering... This message and any attachment are confidential and may be privileged or otherwise protected from disclosure. If you are not the intended recipient, you must not copy this message or attachment or disclose the contents to any other person. If you have received this transmission in error, please notify the sender immediately and delete the message and any attachment from your system. Merck KGaA, Darmstadt, Germany and any of its subsidiaries do not accept liability for any omissions or errors in this message which may arise as a result of E-Mail-transmission or for damages resulting from any unauthorized changes of the content of this message and any attachment thereto. Merck KGaA, Darmstadt, Germany and any of its subsidiaries do not guarantee that this message is free of viruses and does not accept liability for any damages caused by any virus transmitted therewith. Click http://www.merckgroup.com/disclaimer to access the German, French, Spanish and Portuguese versions of this disclaimer. ------------------------------------------------------------------------------ Everyone hates slow websites. So do we. Make your web apps faster with AppDynamics Download AppDynamics Lite for free today: http://p.sf.net/sfu/appdyn_sfd2d_oct _______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general