Converting to a numpy array gave me a different and strange error message:

/Users/andrewwinterman/Documents/sparks-honey/classifier/lib/python2.7/site-packages/sklearn/grid_search.pyc
in fit_grid_point(X, y, base_clf, clf_params, train, test, loss_func,
score_func, verbose, **fit_params)
    109         y_test = y[safe_mask(y, test)]
    110         y_train = y[safe_mask(y, train)]
--> 111         clf.fit(X_train, y_train, **fit_params)
    112         if loss_func is not None:
    113             y_pred = clf.predict(X_test)

/Users/andrewwinterman/Documents/sparks-honey/classifier/lib/python2.7/site-packages/sklearn/multiclass.pyc
in fit(self, X, y)
    183         self
    184         """
--> 185         self.estimators_, self.label_binarizer_ =
fit_ovr(self.estimator, X, y)
    186         return self
    187

/Users/andrewwinterman/Documents/sparks-honey/classifier/lib/python2.7/site-packages/sklearn/multiclass.pyc
in fit_ovr(estimator, X, y)
     79
     80     lb = LabelBinarizer()
---> 81     Y = lb.fit_transform(y)
     82     estimators = [_fit_binary(estimator, X, Y[:, i],
     83                               classes=["not %s" % str(i), i])

/Users/andrewwinterman/Documents/sparks-honey/classifier/lib/python2.7/site-packages/sklearn/base.pyc
in fit_transform(self, X, y, **fit_params)
    350         if y is None:
    351             # fit method of arity 1 (unsupervised transformation)
--> 352             return self.fit(X, **fit_params).transform(X)
    353         else:
    354             # fit method of arity 2 (supervised transformation)

/Users/andrewwinterman/Documents/sparks-honey/classifier/lib/python2.7/site-packages/sklearn/preprocessing.pyc
in fit(self, y)
    955                 self.classes_ = np.array(sorted(set.union(*map(set,
y))))
    956         else:
--> 957             self.classes_ = np.unique(y)
    958         return self
    959

/usr/local/Cellar/python/2.7.3/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/numpy/lib/arraysetops.pyc
in unique(ar, return_index, return_inverse)
    192
    193     else:
--> 194         ar.sort()
    195         flag = np.concatenate(([True], ar[1:] != ar[:-1]))
    196         return ar[flag]

ValueError: The truth value of an array with more than one element is
ambiguous. Use a.any() or a.all()

Should I open an issue on github?

On Tue, Jan 8, 2013 at 3:54 PM, Andrew Winterman <[email protected]>wrote:

> X is a sparse matrix:
>
> >>>> X
> <926x1238 sparse matrix of type '<type 'numpy.float64'>'
>         with 43973 stored elements in Compressed Sparse Row format>
>
> Y is a regular python list of 926 lists of strings:
>
> >>>> Y[0:10]
> [['29'], ['3',
> '24'], ['48'], ['29'], ['37'], ['3'], ['14'], ['21'], ['16', '48',
> '50'], ['48']]
>
>
>
> On Tue, Jan 8, 2013 at 3:43 PM, Andreas Mueller 
> <[email protected]>wrote:
>
>> What is the type and shape of Y and X?
>>
>
>
>
> --
> Andrew Winterman
> 714 362 6823
>



-- 
Andrew Winterman
714 362 6823
------------------------------------------------------------------------------
Master Java SE, Java EE, Eclipse, Spring, Hibernate, JavaScript, jQuery
and much more. Keep your Java skills current with LearnJavaNow -
200+ hours of step-by-step video tutorials by Java experts.
SALE $49.99 this month only -- learn more at:
http://p.sf.net/sfu/learnmore_122612 
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to