Hi Lukas,

the impurity (in your case entropy) is simply averaged over all
outputs - see [1] - the code is written in cython (a python dialect
that translates to C).

best,
 Peter

[1] 
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_tree.pyx#L1482

2013/2/4 Ribonous <[email protected]>:
> I think I understand how a random forest classifier works in the univariate
> case. Unfortunately I haven't found much information about how to implement
> random forest classifier in the multi-output case.
>
> How does the random forest classifier in sklearn measure the information
> gain for a given split in the multi-output case ? Can anyone point me to
> references on this?
>
> Also, is the random forest implementation written in Python or another
> language?
>
> Thanks,
>
> Lukas
>
>
>
> ------------------------------------------------------------------------------
> Everyone hates slow websites. So do we.
> Make your web apps faster with AppDynamics
> Download AppDynamics Lite for free today:
> http://p.sf.net/sfu/appdyn_d2d_jan
> _______________________________________________
> Scikit-learn-general mailing list
> [email protected]
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>



-- 
Peter Prettenhofer

------------------------------------------------------------------------------
Everyone hates slow websites. So do we.
Make your web apps faster with AppDynamics
Download AppDynamics Lite for free today:
http://p.sf.net/sfu/appdyn_d2d_jan
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to