Hey!

One simple solution that often works wonders is to set the class_weight 
parameter of a classifier (if available) to 'auto' [1].

If you have enough data, it often also makes sense to balance the data 
beforehand.

[1] http://scikit-learn.org/dev/modules/svm.html#unbalanced-problems

Am 25.02.2013 14:02, schrieb Maor Hornstein:
> I'm using scikit-learn in my Python program in order to perform some
> machine-learning operations. The problem is that my data-set has severe
> imbalance issues.
>
> Does anyone know a solution for imbalance in scikit-learn or in python
> in general?
>
>
> Thanks :)
>
>
>
> ------------------------------------------------------------------------------
> Everyone hates slow websites. So do we.
> Make your web apps faster with AppDynamics
> Download AppDynamics Lite for free today:
> http://p.sf.net/sfu/appdyn_d2d_feb
>
>
>
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>


------------------------------------------------------------------------------
Everyone hates slow websites. So do we.
Make your web apps faster with AppDynamics
Download AppDynamics Lite for free today:
http://p.sf.net/sfu/appdyn_d2d_feb
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to