The following script shows no difference in coefficients with or without
normalization:
>>> d = datasets.load_diabetes()
>>> linear_model.Lasso(normalize=True).fit(d['data'], d['target']).coef_
array([ 0. , -0. , 367.70185207, 6.30190419,
0. , 0. , -0. , 0. ,
307.6057 , 0. ])
>>> clf = linear_model.Lasso(normalize=False).fit(d['data'],
d['target']).coef_
array([ 0. , -0. , 367.70185207, 6.30190419,
0. , 0. , -0. , 0. ,
307.6057 , 0. ])
>>>
What am I doing wrong?
Is it possible that coef_ are always reported unnormalized?
Best Regards.
------------------------------------------------------------------------------
Get 100% visibility into Java/.NET code with AppDynamics Lite
It's a free troubleshooting tool designed for production
Get down to code-level detail for bottlenecks, with <2% overhead.
Download for free and get started troubleshooting in minutes.
http://p.sf.net/sfu/appdyn_d2d_ap2
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general