The following script shows no difference in coefficients with or without
normalization:


>>> d = datasets.load_diabetes()

>>> linear_model.Lasso(normalize=True).fit(d['data'], d['target']).coef_
array([   0.        ,   -0.        ,  367.70185207,    6.30190419,
          0.        ,    0.        ,   -0.        ,    0.        ,
        307.6057    ,    0.        ])

>>> clf = linear_model.Lasso(normalize=False).fit(d['data'],
d['target']).coef_
array([   0.        ,   -0.        ,  367.70185207,    6.30190419,
          0.        ,    0.        ,   -0.        ,    0.        ,
        307.6057    ,    0.        ])
>>>

What am I doing wrong?
Is it possible that coef_ are always reported unnormalized?

Best Regards.
------------------------------------------------------------------------------
Get 100% visibility into Java/.NET code with AppDynamics Lite
It's a free troubleshooting tool designed for production
Get down to code-level detail for bottlenecks, with <2% overhead.
Download for free and get started troubleshooting in minutes.
http://p.sf.net/sfu/appdyn_d2d_ap2
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to