Hi,
I'm new to scikit-learn. I'm trying use preprocessing.OneHotEncoder to
encode my training and test data. After encoding I tried to train Random
forest classifier using that data. But I get the following error when
fitting.
(Here the error trace)

 99         model.fit(X_train, y_train)    100         preds =
model.predict_proba(X_cv)[:, 1]    101
C:\Python27\lib\site-packages\sklearn\ensemble\forest.pyc in fit(self,
X, y, sample_weight)    288     289         # Precompute some data-->
290         X, y = check_arrays(X, y, sparse_format="dense")    291
     if (getattr(X, "dtype", None) != DTYPE or    292
X.ndim != 2 or
C:\Python27\lib\site-packages\sklearn\utils\validation.pyc in
check_arrays(*arrays, **options)    200                     array =
array.tocsc()    201                 elif sparse_format == 'dense':-->
202                     raise TypeError('A sparse matrix was passed,
but dense '    203                                     'data is
required. Use X.toarray() to '    204
   'convert to a dense numpy array.')
TypeError: A sparse matrix was passed, but dense data is required. Use
X.toarray() to convert to a dense numpy array.


I tried to convert the sparse matrix into dense using X.toarray() and
X.todense()

But when I do that, I get the following error trace.


 99         model.fit(X_train.toarray(), y_train)    100         preds
= model.predict_proba(X_cv)[:, 1]    101
C:\Python27\lib\site-packages\scipy\sparse\compressed.pyc in
toarray(self)    548     549     def toarray(self):--> 550
return self.tocoo(copy=False).toarray()    551     552
##############################################################
C:\Python27\lib\site-packages\scipy\sparse\coo.pyc in toarray(self)
236     237     def toarray(self):--> 238         B =
np.zeros(self.shape, dtype=self.dtype)    239         M,N = self.shape
   240         coo_todense(M, N, self.nnz, self.row, self.col,
self.data, B.ravel())
ValueError: array is too big.


Can anyone help me to fix this.


Thank you
------------------------------------------------------------------------------
This SF.net email is sponsored by Windows:

Build for Windows Store.

http://p.sf.net/sfu/windows-dev2dev
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to