? you already use one-hot encoding in your example (
preprocessing.OneHotEncoder)


2013/6/21 Maheshakya Wijewardena <pmaheshak...@gmail.com>

> can anyone give me a sample algorithm for one hot encoding used in
> scikit-learn?
>
>
> On Thu, Jun 20, 2013 at 8:37 PM, Peter Prettenhofer <
> peter.prettenho...@gmail.com> wrote:
>
>> you can try an ordinal encoding instead - just map each categorical value
>> to an integer so that you end up with 8 numerical features - if you use
>> enough trees and grow them deep it may work
>>
>>
>> 2013/6/20 Maheshakya Wijewardena <pmaheshak...@gmail.com>
>>
>>> And yes Gilles, It is the Amazon challenge :D
>>>
>>>
>>> On Thu, Jun 20, 2013 at 8:21 PM, Maheshakya Wijewardena <
>>> pmaheshak...@gmail.com> wrote:
>>>
>>>> The shape of X after encoding is (32769, 16600). Seems as if that is
>>>> too big to be converted into a dense matrix. Can Random forest handle this
>>>> amount of features?
>>>>
>>>>
>>>> On Thu, Jun 20, 2013 at 7:31 PM, Olivier Grisel <
>>>> olivier.gri...@ensta.org> wrote:
>>>>
>>>>> 2013/6/20 Lars Buitinck <l.j.buiti...@uva.nl>:
>>>>> > 2013/6/20 Olivier Grisel <olivier.gri...@ensta.org>:
>>>>> >>> Actually twice as much, even on a 32-bit platform (float size is
>>>>> >>> always 64 bits).
>>>>> >>
>>>>> >> The decision tree code always uses 32 bits floats:
>>>>> >>
>>>>> >>
>>>>> https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_tree.pyx#L38
>>>>> >>
>>>>> >> but you have to cast your data to `dtype=np.float32` in fortran
>>>>> layout
>>>>> >> ahead of time to avoid the memory copy.
>>>>> >
>>>>> > OneHot produces np.float, though, which is float64.
>>>>>
>>>>> Alright but you could convert it to np.float32 before calling toarray.
>>>>> But anyway this kind of sparsity level is unsuitable for random
>>>>> forests anyways I think.
>>>>>
>>>>> --
>>>>> Olivier
>>>>> http://twitter.com/ogrisel - http://github.com/ogrisel
>>>>>
>>>>>
>>>>> ------------------------------------------------------------------------------
>>>>> This SF.net email is sponsored by Windows:
>>>>>
>>>>> Build for Windows Store.
>>>>>
>>>>> http://p.sf.net/sfu/windows-dev2dev
>>>>> _______________________________________________
>>>>> Scikit-learn-general mailing list
>>>>> Scikit-learn-general@lists.sourceforge.net
>>>>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>>>>
>>>>
>>>>
>>>
>>>
>>> ------------------------------------------------------------------------------
>>> This SF.net email is sponsored by Windows:
>>>
>>> Build for Windows Store.
>>>
>>> http://p.sf.net/sfu/windows-dev2dev
>>> _______________________________________________
>>> Scikit-learn-general mailing list
>>> Scikit-learn-general@lists.sourceforge.net
>>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>>
>>>
>>
>>
>> --
>> Peter Prettenhofer
>>
>>
>> ------------------------------------------------------------------------------
>> This SF.net email is sponsored by Windows:
>>
>> Build for Windows Store.
>>
>> http://p.sf.net/sfu/windows-dev2dev
>> _______________________________________________
>> Scikit-learn-general mailing list
>> Scikit-learn-general@lists.sourceforge.net
>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>
>>
>
>
> ------------------------------------------------------------------------------
> This SF.net email is sponsored by Windows:
>
> Build for Windows Store.
>
> http://p.sf.net/sfu/windows-dev2dev
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>


-- 
Peter Prettenhofer
------------------------------------------------------------------------------
This SF.net email is sponsored by Windows:

Build for Windows Store.

http://p.sf.net/sfu/windows-dev2dev
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to