>From your code it doesn't seem like it, but are you using
multiprocessing (ie. n_jobs > 1)?  It causes issues on certain
configurations.

Either way, try to pass `verbose=2` to the grid search constructor.

Yours,
Vlad

On Wed, Jul 3, 2013 at 9:36 PM, Josh Wasserstein <ribonucle...@gmail.com> wrote:
> This is odd. I can successfully run the example `grid_search_digits.py`.
> However, I am unable to do a grid search on my own data.
>
> I have the following setup:
> ===============
>     import sklearn
>     from sklearn.svm import SVC
>     from sklearn.grid_search import GridSearchCV
>     from sklearn.cross_validation import LeaveOneOut
>     from sklearn.metrics import auc_score
>
>     # ... Build X and y ....
>
>     tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
>                          'C': [1, 10, 100, 1000]},
>                         {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
>
>     loo = LeaveOneOut(len(y))
>     clf = GridSearchCV(SVC(C=1), tuned_parameters, score_func=auc_score)
>     clf.fit(X, y, cv=loo)
>     ....
>     print clf.best_estimator_
>     ....
> ===============
> But I never get passed `clf.fit` (I left it run for ~1hr).
>
> I have tried also with
>
>     clf.fit(X, y, cv=10)
>
> and with
>
>     skf = StratifiedKFold(y,2)
>     clf.fit(X, y, cv=skf)
>
> and had the same problem (it never finishes the clf.fit statement). My data
> is simple:
>
>     > X.shape
>     (27,26)
>
>     > y.shape
>     5
>
>     > y.dtype
>     dtype('int64')
>
>
>     >?y
>     Type:       ndarray
>     String Form:[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1]
>     Length:     27
>     File:
> /home/jacob04/opt/python/numpy/numpy-1.7.1/lib/python2.7/site-
>     packages/numpy/__init__.py
>     Docstring:  <no docstring>
>     Class Docstring:
>     ndarray(shape, dtype=float, buffer=None, offset=0,
>             strides=None, order=None)
>
>     > ?X
>     Type:       ndarray
>     String Form:
>            [[ -3.61238468e+03  -3.61253920e+03  -3.61290196e+03
> -3.61326679e+03
>                7.84590361e+02   0.0000 <...> 0000e+00   2.22389150e+00
> 2.53252959e+00
>                2.11606216e+00  -1.99613432e+05  -1.99564828e+05]]
>     Length:     27
>     File:
> /home/jacob04/opt/python/numpy/numpy-1.7.1/lib/python2.7/site-
>     packages/numpy/__init__.py
>     Docstring:  <no docstring>
>     Class Docstring:
>     ndarray(shape, dtype=float, buffer=None, offset=0,
>             strides=None, order=None)
>
> This is all with the latest version of scikit-learn (0.13.1) and:
>
>     $ pip freeze
>     Cython==0.19.1
>     PIL==1.1.7
>     PyXB==1.2.2
>     PyYAML==3.10
>     argparse==1.2.1
>     distribute==0.6.34
>     epc==0.0.5
>     ipython==0.13.2
>     jedi==0.6.0
>     matplotlib==1.3.x
>     nltk==2.0.4
>     nose==1.3.0
>     numexpr==2.1
>     numpy==1.7.1
>     pandas==0.11.0
>     pyparsing==1.5.7
>     python-dateutil==2.1
>     pytz==2013b
>     rpy2==2.3.1
>     scikit-learn==0.13.1
>     scipy==0.12.0
>     sexpdata==0.0.3
>     six==1.3.0
>     stemming==1.0.1
>     -e
> git+https://github.com/PyTables/PyTables.git@df7b20444b0737cf34686b5d88b4e674ec85575b#egg=tables-dev
>     tornado==3.0.1
>     wsgiref==0.1.2
>
> Thanks,
>
> Jacob
>
> PS: This thread is based on the following StackOverflow post:
> http://stackoverflow.com/questions/17455302/clf-fit-freezes-on-small-dataset-in-scikit-learn
>
>
> ------------------------------------------------------------------------------
> This SF.net email is sponsored by Windows:
>
> Build for Windows Store.
>
> http://p.sf.net/sfu/windows-dev2dev
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>

------------------------------------------------------------------------------
This SF.net email is sponsored by Windows:

Build for Windows Store.

http://p.sf.net/sfu/windows-dev2dev
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to