>From your code it doesn't seem like it, but are you using multiprocessing (ie. n_jobs > 1)? It causes issues on certain configurations.
Either way, try to pass `verbose=2` to the grid search constructor. Yours, Vlad On Wed, Jul 3, 2013 at 9:36 PM, Josh Wasserstein <ribonucle...@gmail.com> wrote: > This is odd. I can successfully run the example `grid_search_digits.py`. > However, I am unable to do a grid search on my own data. > > I have the following setup: > =============== > import sklearn > from sklearn.svm import SVC > from sklearn.grid_search import GridSearchCV > from sklearn.cross_validation import LeaveOneOut > from sklearn.metrics import auc_score > > # ... Build X and y .... > > tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], > 'C': [1, 10, 100, 1000]}, > {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] > > loo = LeaveOneOut(len(y)) > clf = GridSearchCV(SVC(C=1), tuned_parameters, score_func=auc_score) > clf.fit(X, y, cv=loo) > .... > print clf.best_estimator_ > .... > =============== > But I never get passed `clf.fit` (I left it run for ~1hr). > > I have tried also with > > clf.fit(X, y, cv=10) > > and with > > skf = StratifiedKFold(y,2) > clf.fit(X, y, cv=skf) > > and had the same problem (it never finishes the clf.fit statement). My data > is simple: > > > X.shape > (27,26) > > > y.shape > 5 > > > y.dtype > dtype('int64') > > > >?y > Type: ndarray > String Form:[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1] > Length: 27 > File: > /home/jacob04/opt/python/numpy/numpy-1.7.1/lib/python2.7/site- > packages/numpy/__init__.py > Docstring: <no docstring> > Class Docstring: > ndarray(shape, dtype=float, buffer=None, offset=0, > strides=None, order=None) > > > ?X > Type: ndarray > String Form: > [[ -3.61238468e+03 -3.61253920e+03 -3.61290196e+03 > -3.61326679e+03 > 7.84590361e+02 0.0000 <...> 0000e+00 2.22389150e+00 > 2.53252959e+00 > 2.11606216e+00 -1.99613432e+05 -1.99564828e+05]] > Length: 27 > File: > /home/jacob04/opt/python/numpy/numpy-1.7.1/lib/python2.7/site- > packages/numpy/__init__.py > Docstring: <no docstring> > Class Docstring: > ndarray(shape, dtype=float, buffer=None, offset=0, > strides=None, order=None) > > This is all with the latest version of scikit-learn (0.13.1) and: > > $ pip freeze > Cython==0.19.1 > PIL==1.1.7 > PyXB==1.2.2 > PyYAML==3.10 > argparse==1.2.1 > distribute==0.6.34 > epc==0.0.5 > ipython==0.13.2 > jedi==0.6.0 > matplotlib==1.3.x > nltk==2.0.4 > nose==1.3.0 > numexpr==2.1 > numpy==1.7.1 > pandas==0.11.0 > pyparsing==1.5.7 > python-dateutil==2.1 > pytz==2013b > rpy2==2.3.1 > scikit-learn==0.13.1 > scipy==0.12.0 > sexpdata==0.0.3 > six==1.3.0 > stemming==1.0.1 > -e > git+https://github.com/PyTables/PyTables.git@df7b20444b0737cf34686b5d88b4e674ec85575b#egg=tables-dev > tornado==3.0.1 > wsgiref==0.1.2 > > Thanks, > > Jacob > > PS: This thread is based on the following StackOverflow post: > http://stackoverflow.com/questions/17455302/clf-fit-freezes-on-small-dataset-in-scikit-learn > > > ------------------------------------------------------------------------------ > This SF.net email is sponsored by Windows: > > Build for Windows Store. > > http://p.sf.net/sfu/windows-dev2dev > _______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > ------------------------------------------------------------------------------ This SF.net email is sponsored by Windows: Build for Windows Store. http://p.sf.net/sfu/windows-dev2dev _______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general