It's what they have done in the mulan library.

Arnaud

On 19 Jul 2013, at 13:24, Olivier Grisel <olivier.gri...@ensta.org> wrote:

> 2013/7/19 Arnaud Joly <arnaud4...@gmail.com>:
>> You can probably average the precision recall curve
>> or use some ranking metrics [1].
>> 
>> Arnaud
>> 
>> [1]  Mining Multi-label Data
>> http://lkm.fri.uni-lj.si/xaigor/slo/pedagosko/dr-ui/tsoumakas09-dmkdh.pdf
> 
> This paper indeed suggests to use micro and macro averaging for all
> label binary measures (such as precision, recall, f1 and ROC-AUC). We
> already do it for precision, recall and f1. We could add micro and
> macro averaging for ROC-AUC and PR-AUC.
> 
> --
> Olivier
> 
> ------------------------------------------------------------------------------
> See everything from the browser to the database with AppDynamics
> Get end-to-end visibility with application monitoring from AppDynamics
> Isolate bottlenecks and diagnose root cause in seconds.
> Start your free trial of AppDynamics Pro today!
> http://pubads.g.doubleclick.net/gampad/clk?id=48808831&iu=/4140/ostg.clktrk
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general


------------------------------------------------------------------------------
Get your SQL database under version control now!
Version control is standard for application code, but databases havent 
caught up. So what steps can you take to put your SQL databases under 
version control? Why should you start doing it? Read more to find out.
http://pubads.g.doubleclick.net/gampad/clk?id=49501711&iu=/4140/ostg.clktrk
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to