Hey Chris,

This is good news. The problems are fairly minor. Don't worry about the
issue. These tests failing are numerically unstable ones. We'll see what
we can do about them, but they are not release blockers. The good news is
that we don't have major building or linking problem.

Thanks a lot!

Gaël

On Wed, Jul 31, 2013 at 06:45:18PM -0700, Christoph Gohlke wrote:
> Hi Gaël,

> I'm currently traveling and have limited time.

> I had no problem building scikit-learn-0.14a1 with the msvc/MKL
> build chain. The installers are at
> <http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn>

> Here are the test failures/errors for Python 27 32 & 64 bit, and
> Python 3.3 64 bit. I can create an github issue once I'm back:


> ======================================================================
> FAIL: sklearn.cluster.tests.test_spectral.test_spectral_lobpcg_mode
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python27\lib\site-packages\nose\case.py", line 197, in runTest
>     self.test(*self.arg)
>   File "x:\Python27\lib\site-packages\sklearn\cluster\tests\test_spectral.py",
> line 66, in test_spectral_lobpcg_mode
>     random_state=0, eigen_solver="lobpcg")
>   File "x:\Python27\lib\site-packages\sklearn\cluster\spectral.py",
> line 268, in spectral_clustering
>     eigen_tol=eigen_tol, drop_first=False)
>   File 
> "x:\Python27\lib\site-packages\sklearn\manifold\spectral_embedding_.py",
> line 303, in spectral_embedding
>     largest=False, maxiter=2000)
>   File 
> "x:\Python27\lib\site-packages\scipy\sparse\linalg\eigen\lobpcg\lobpcg.py",
> line 438, in lobpcg
>     assert np.allclose( gramA.T, gramA )
> AssertionError:
> -------------------- >> begin captured stdout << ---------------------
> [[  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
>     0.00000000e+00   0.00000000e+00   0.00000000e+00]
>  [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
>     0.00000000e+00   0.00000000e+00   0.00000000e+00]
>  [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
>     0.00000000e+00   0.00000000e+00   0.00000000e+00]
>  [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
>     5.14996032e-17   0.00000000e+00   0.00000000e+00]
>  [  0.00000000e+00   0.00000000e+00   0.00000000e+00  -5.14996032e-17
>     0.00000000e+00   0.00000000e+00   0.00000000e+00]
>  [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
>     0.00000000e+00   0.00000000e+00   6.04419724e-06]
>  [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
>     0.00000000e+00  -6.04419724e-06   0.00000000e+00]]

> --------------------- >> end captured stdout << ----------------------

> ======================================================================
> FAIL: Check the performance of hashing numpy arrays:
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python27\lib\site-packages\nose\case.py", line 197, in runTest
>     self.test(*self.arg)
> AssertionError: False is not true

> ======================================================================
> FAIL: sklearn.linear_model.tests.test_least_angle.test_lasso_lars_path_length
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python27\lib\site-packages\nose\case.py", line 197, in runTest
>     self.test(*self.arg)
>   File 
> "x:\Python27\lib\site-packages\sklearn\linear_model\tests\test_least_angle.py",
> line 295, in test_lasso_lars_path_length
>     np.testing.assert_array_equal(lasso.alphas_[:3], lasso2.alphas_)
>   File "x:\Python27\lib\site-packages\numpy\testing\utils.py", line
> 719, in assert_array_equal
>     verbose=verbose, header='Arrays are not equal')
>   File "x:\Python27\lib\site-packages\numpy\testing\utils.py", line
> 645, in assert_array_compare
>     raise AssertionError(msg)
> AssertionError:
> Arrays are not equal

> (mismatch 33.3333333333%)
>  x: array([ 2.14804358,  2.01202713,  1.02466283])
>  y: array([ 2.14804358,  2.01202713,  1.02466283])

> ======================================================================
> FAIL: sklearn.tests.test_common.test_transformers
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python27\lib\site-packages\nose\case.py", line 197, in runTest
>     self.test(*self.arg)
>   File "x:\Python27\lib\site-packages\sklearn\tests\test_common.py",
> line 243, in test_transformers
>     "fit_transform not correct in %s" % Transformer)
>   File "x:\Python27\lib\site-packages\numpy\testing\utils.py", line
> 812, in assert_array_almost_equal
>     header=('Arrays are not almost equal to %d decimals' % decimal))
>   File "x:\Python27\lib\site-packages\numpy\testing\utils.py", line
> 645, in assert_array_compare
>     raise AssertionError(msg)
> AssertionError:
> Arrays are not almost equal to 2 decimals
> fit_transform not correct in <class
> 'sklearn.manifold.locally_linear.LocallyLinearEmbedding'>
> (mismatch 50.0%)
>  x: array([[  9.67094399e-02,   2.98382398e-01],
>        [  2.39403323e-01,   1.13321574e-11],
>        [  2.39403323e-01,  -2.29468389e-11],...
>  y: array([[ -7.53521316e-02,   2.98142816e-01],
>        [ -2.46958950e-01,   7.56977057e-12],
>        [ -2.46958950e-01,  -1.70347906e-12],...

> ----------------------------------------------------------------------
> Ran 1718 tests in 152.153s

> FAILED (SKIP=15, failures=4)






> ======================================================================
> ERROR: sklearn.utils.tests.test_sparsefuncs.test_densify_rows
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python27-x64\lib\site-packages\nose\case.py", line 197,
> in runTest
>     self.test(*self.arg)
>   File 
> "x:\Python27-x64\lib\site-packages\sklearn\utils\tests\test_sparsefuncs.py",
> line 40, in test_densify_rows
>     assign_rows_csr(X, rows, np.arange(out.shape[0])[::-1], out)
>   File "sparsefuncs.pyx", line 300, in
> sklearn.utils.sparsefuncs.assign_rows_csr
> (sklearn\utils\sparsefuncs.c:4029)
> ValueError: Buffer dtype mismatch, expected 'npy_intp' but got 'long'

> ======================================================================
> ERROR: sklearn.tests.test_dummy.test_stratified_strategy
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python27-x64\lib\site-packages\nose\case.py", line 197,
> in runTest
>     self.test(*self.arg)
>   File
> "x:\Python27-x64\lib\site-packages\sklearn\tests\test_dummy.py",
> line 97, in test_stratified_strategy
>     y_pred = clf.predict(X)
>   File "x:\Python27-x64\lib\site-packages\sklearn\dummy.py", line
> 134, in predict
>     proba = self.predict_proba(X)
>   File "x:\Python27-x64\lib\site-packages\sklearn\dummy.py", line
> 198, in predict_proba
>     out = rs.multinomial(1, class_prior_[k], size=n_samples)
>   File "mtrand.pyx", line 4257, in mtrand.RandomState.multinomial
> (numpy\random\mtrand\mtrand.c:20210)
> TypeError: unsupported operand type(s) for +: 'long' and 'tuple'

> ======================================================================
> ERROR: sklearn.tests.test_dummy.test_stratified_strategy_multioutput
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python27-x64\lib\site-packages\nose\case.py", line 197,
> in runTest
>     self.test(*self.arg)
>   File
> "x:\Python27-x64\lib\site-packages\sklearn\tests\test_dummy.py",
> line 116, in test_stratified_strategy_multioutput
>     y_pred = clf.predict(X)
>   File "x:\Python27-x64\lib\site-packages\sklearn\dummy.py", line
> 134, in predict
>     proba = self.predict_proba(X)
>   File "x:\Python27-x64\lib\site-packages\sklearn\dummy.py", line
> 198, in predict_proba
>     out = rs.multinomial(1, class_prior_[k], size=n_samples)
>   File "mtrand.pyx", line 4257, in mtrand.RandomState.multinomial
> (numpy\random\mtrand\mtrand.c:20210)
> TypeError: unsupported operand type(s) for +: 'long' and 'tuple'

> ======================================================================
> FAIL: sklearn.tests.test_common.test_transformers
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python27-x64\lib\site-packages\nose\case.py", line 197,
> in runTest
>     self.test(*self.arg)
>   File
> "x:\Python27-x64\lib\site-packages\sklearn\tests\test_common.py",
> line 243, in test_transformers
>     "fit_transform not correct in %s" % Transformer)
>   File "x:\Python27-x64\lib\site-packages\numpy\testing\utils.py",
> line 812, in assert_array_almost_equal
>     header=('Arrays are not almost equal to %d decimals' % decimal))
>   File "x:\Python27-x64\lib\site-packages\numpy\testing\utils.py",
> line 600, in assert_array_compare
>     raise AssertionError(msg)
> AssertionError:
> Arrays are not almost equal to 2 decimals
> fit_transform not correct in <class
> 'sklearn.decomposition.kernel_pca.KernelPCA'>
> (shapes (30L, 14L), (30L, 11L) mismatch)
>  x: array([[  1.87664949e+00,   8.57398986e-02,   4.20312700e-02,
>           3.38067129e-08,   0.00000000e+00,   0.00000000e+00,
>           2.82259418e-08,   0.00000000e+00,   0.00000000e+00,...
>  y: array([[  1.87664949e+00,   8.57398986e-02,   4.20312700e-02,
>           3.81842256e-08,   1.30385160e-08,   4.65661287e-08,
>          -3.72529030e-09,   3.72529030e-09,  -1.11758709e-08,...

> ----------------------------------------------------------------------
> Ran 1718 tests in 145.426s

> FAILED (SKIP=15, errors=3, failures=1)






> ======================================================================
> ERROR: Failure: ZeroDivisionError (float division by zero)
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python33\lib\site-packages\nose\failure.py", line 38, in runTest
>     raise self.exc_val.with_traceback(self.tb)
>   File "x:\Python33\lib\site-packages\nose\loader.py", line 254, in
> generate
>     for test in g():
>   File 
> "x:\Python33\lib\site-packages\sklearn\externals\joblib\test\test_hashing.py",
> line 186, in test_hash_numpy_performance
>     relative_diff = relative_time(md5_hash, hash, a)
>   File 
> "x:\Python33\lib\site-packages\sklearn\externals\joblib\test\test_hashing.py",
> line 54, in relative_time
>     / (time_func1 + time_func2))
> ZeroDivisionError: float division by zero

> ======================================================================
> ERROR: sklearn.utils.tests.test_sparsefuncs.test_densify_rows
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python33\lib\site-packages\nose\case.py", line 198, in runTest
>     self.test(*self.arg)
>   File 
> "x:\Python33\lib\site-packages\sklearn\utils\tests\test_sparsefuncs.py",
> line 40, in test_densify_rows
>     assign_rows_csr(X, rows, np.arange(out.shape[0])[::-1], out)
>   File "sparsefuncs.pyx", line 300, in
> sklearn.utils.sparsefuncs.assign_rows_csr
> (sklearn\utils\sparsefuncs.c:4029)
> ValueError: Buffer dtype mismatch, expected 'npy_intp' but got 'long'

> ======================================================================
> FAIL: sklearn.tests.test_common.test_transformers
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "x:\Python33\lib\site-packages\nose\case.py", line 198, in runTest
>     self.test(*self.arg)
>   File "x:\Python33\lib\site-packages\sklearn\tests\test_common.py",
> line 243, in test_transformers
>     "fit_transform not correct in %s" % Transformer)
>   File "x:\Python33\lib\site-packages\numpy\testing\utils.py", line
> 812, in assert_array_almost_equal
>     header=('Arrays are not almost equal to %d decimals' % decimal))
>   File "x:\Python33\lib\site-packages\numpy\testing\utils.py", line
> 600, in assert_array_compare
>     raise AssertionError(msg)
> AssertionError:
> Arrays are not almost equal to 2 decimals
> fit_transform not correct in <class
> 'sklearn.decomposition.kernel_pca.KernelPCA'>
> (shapes (30, 11), (30, 17) mismatch)
>  x: array([[  1.87664949e+00,   8.57398986e-02,   4.20312700e-02,
>           3.38562099e-08,   0.00000000e+00,   0.00000000e+00,
>           0.00000000e+00,   2.69366428e-08,   0.00000000e+00,...
>  y: array([[  1.87664949e+00,   8.57398986e-02,   4.20312700e-02,
>           3.86498868e-08,  -2.98023224e-08,   7.82310963e-08,
>          -3.35276127e-08,  -5.58793545e-08,  -8.56816769e-08,...

> ----------------------------------------------------------------------
> Ran 1709 tests in 144.500s

> FAILED (SKIP=15, errors=2, failures=1)


> Christoph



> On 7/31/2013 1:56 PM, Gael Varoquaux wrote:
> >As Christoph,

> >I am contacting you because you are the guy that rocks and provides
> >fantastically useful binaries of many scientific-computing packages under
> >Windows. We (the scikit-learn team) are going to release a new version of
> >scikit-learn. I have tagged the alpha release and uploaded the sources a
> >few days ago.
> >http://sourceforge.net/projects/scikit-learn/files/scikit-learn-0.14a1.tar.gz/download

> >I was wondering if you had time to build the new release using your build
> >chain and run the tests with nosetests. If you have any failures, it
> >would be great if you could report them (you can for instance create an
> >issue on our tracker), so that we try to address them before the final
> >release.

> >Thanks a lot for maintaining these binaries!

> >Gaël


-- 
    Gael Varoquaux
    Researcher, INRIA Parietal
    Laboratoire de Neuro-Imagerie Assistee par Ordinateur
    NeuroSpin/CEA Saclay , Bat 145, 91191 Gif-sur-Yvette France
    Phone:  ++ 33-1-69-08-79-68
    http://gael-varoquaux.info            http://twitter.com/GaelVaroquaux

------------------------------------------------------------------------------
Get your SQL database under version control now!
Version control is standard for application code, but databases havent 
caught up. So what steps can you take to put your SQL databases under 
version control? Why should you start doing it? Read more to find out.
http://pubads.g.doubleclick.net/gampad/clk?id=49501711&iu=/4140/ostg.clktrk
_______________________________________________
Scikit-learn-general mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to