The bagging tests are failing under old version of numpy / python. Can
someone have a look at it?


---------- Forwarded message ----------
From:  <ad...@shiningpanda.com>
Date: 2013/9/11
Subject: Build failed in Jenkins: python-2.6-numpy-1.3.0-scipy-0.7.2 #2167
To: olivier.gri...@ensta.org,
scikit-learn-comm...@lists.sourceforge.net, g.lou...@gmail.com,
larsm...@gmail.com


See 
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/2167/changes>

Changes:

[larsmans] DOC copyedit DBSCAN implementation notes

[larsmans] DOC reference for k-means++ in clustering narrative

------------------------------------------
[...truncated 3082 lines...]
sklearn.tests.test_pipeline.test_pipeline_fit_transform ... ok
sklearn.tests.test_pipeline.test_feature_union_weights ... ok
sklearn.tests.test_pipeline.test_feature_union_feature_names ... ok
QDA classification. ... ok
sklearn.tests.test_qda.test_qda_priors ... ok
sklearn.tests.test_qda.test_qda_store_covariances ... ok
sklearn.tests.test_qda.test_qda_regularization ... ok
sklearn.tests.test_random_projection.test_invalid_jl_domain ... ok
sklearn.tests.test_random_projection.test_input_size_jl_min_dim ... ok
Check basic properties of random matrix generation ... ok
Check some statical properties of Gaussian random matrix ... ok
Check some statical properties of sparse random matrix ... ok
sklearn.tests.test_random_projection.test_sparse_random_projection_transformer_invalid_density
... ok
sklearn.tests.test_random_projection.test_random_projection_transformer_invalid_input
... ok
sklearn.tests.test_random_projection.test_try_to_transform_before_fit ... ok
sklearn.tests.test_random_projection.test_too_many_samples_to_find_a_safe_embedding
... ok
sklearn.tests.test_random_projection.test_random_projection_embedding_quality
... ok
sklearn.tests.test_random_projection.test_SparseRandomProjection_output_representation
... ok
sklearn.tests.test_random_projection.test_correct_RandomProjection_dimensions_embedding
... ok
sklearn.tests.test_random_projection.test_warning_n_components_greater_than_n_features
... ok

======================================================================
ERROR: Predict probabilities.
----------------------------------------------------------------------
Traceback (most recent call last):
  File 
"/home/slave/virtualenvs/cpython-2.6/lib/python2.6/site-packages/nose/case.py",
line 197, in runTest
    self.test(*self.arg)
  File 
"<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/ensemble/tests/test_bagging.py";,>
line 163, in test_probability
    np.exp(ensemble.predict_log_proba(X_test)))
  File 
"/home/slave/virtualenvs/cpython-2.6/lib/python2.6/site-packages/numpy/testing/utils.py",
line 537, in assert_array_almost_equal
    header='Arrays are not almost equal')
  File 
"/home/slave/virtualenvs/cpython-2.6/lib/python2.6/site-packages/numpy/testing/utils.py",
line 399, in assert_array_compare
    raise ValueError(msg)
ValueError:
Arrays are not almost equal
 x: array([[ 0. ,  0. ,  1. ],
       [ 0. ,  0. ,  1. ],
       [ 0. ,  0.1,  0.9],...
 y: array([[ NaN,  NaN,  1. ],
       [ NaN,  NaN,  1. ],
       [ NaN,  NaN,  0.9],...

Name                                                  Stmts   Miss
Cover   Missing
-----------------------------------------------------------------------------------
sklearn                                                  26      3
88%   27, 35-38
sklearn.__check_build                                    18      3
83%   24, 45-46
sklearn.__check_build.setup                               9      2
78%   17-18
sklearn._build_utils                                     17      4
76%   18, 22, 27-28
sklearn.base                                            151      9
94%   58, 76, 84, 364-365, 369-370, 379-380
sklearn.cluster                                           8      0   100%
sklearn.cluster._feature_agglomeration                   16      1    94%   46
sklearn.cluster.affinity_propagation_                    96      6
94%   145-146, 167-169, 252
sklearn.cluster.bicluster                                 2      0   100%
sklearn.cluster.bicluster.spectral                      174      3
98%   147-149, 151
sklearn.cluster.bicluster.utils                          20      0   100%
sklearn.cluster.dbscan_                                  73      0   100%
sklearn.cluster.hierarchical                            154      2
99%   109, 128
sklearn.cluster.k_means_                                379      6
98%   95, 360, 680, 953, 1234, 1237
sklearn.cluster.mean_shift_                              81      6
93%   101, 104, 121, 155-157
sklearn.cluster.setup                                    18      2
89%   40-41
sklearn.cluster.spectral                                 99      6
94%   140-142, 154, 418, 452
sklearn.covariance                                        6      0   100%
sklearn.covariance.empirical_covariance_                 62      0   100%
sklearn.covariance.graph_lasso_                         197     12
94%   145, 167, 183-187, 213, 334, 360, 366, 369, 517, 535-536
sklearn.covariance.outlier_detection                     38      2
95%   71, 101
sklearn.covariance.robust_covariance                    211     19
91%   131, 141, 146-148, 154, 243, 341-342, 350, 399-405, 589,
597-602, 670
sklearn.covariance.shrunk_covariance_                   127      5
96%   183, 185-189
sklearn.cross_decomposition                               2      0   100%
sklearn.cross_decomposition.cca_                          5      0   100%
sklearn.cross_decomposition.pls_                        205     37
82%   66-67, 102-103, 233, 235, 237, 244, 248, 250, 253, 256, 290,
332, 372-378, 408-410, 434, 734, 737, 742, 755, 767-773, 792
sklearn.cross_validation                                383      2
99%   94, 1217
sklearn.datasets                                         46      0   100%
sklearn.datasets.base                                   143     18
87%   159-162, 165-169, 475-484, 518-525
sklearn.datasets.california_housing                      37     24
35%   27-29, 64-101
sklearn.datasets.covtype                                 50     23
54%   19-20, 69-78, 84-93, 100-104
sklearn.datasets.lfw                                    157    135
14%   53-55, 66-105, 113-163, 178-208, 260-276, 294-334, 342, 402-429,
439
sklearn.datasets.mlcomp                                  47     40
15%   11-13, 56-103
sklearn.datasets.mldata                                  79      7
91%   15-19, 150-152
sklearn.datasets.olivetti_faces                          41     26
37%   32-35, 89-116
sklearn.datasets.samples_generator                      357     37
90%   117, 121, 124, 535, 584-604, 742, 1132-1135, 1287-1314
sklearn.datasets.setup                                   14      2
86%   21-22
sklearn.datasets.species_distributions                   72     55
24%   46-48, 69-82, 98-108, 125-135, 210-257
sklearn.datasets.svmlight_format                         96      7
93%   126-127, 238, 334, 339, 347-348
sklearn.datasets.twenty_newsgroups                      149    110
26%   58, 76-97, 105-106, 119-121, 132-141, 196-202, 206, 211-265,
305-356
sklearn.decomposition                                    10      0   100%
sklearn.decomposition.dict_learning                     289     30
90%   87, 91-92, 305-306, 308, 417, 445, 450-451, 453, 476, 478, 481,
571, 581, 605, 647, 797, 936, 1088, 1117-1133
sklearn.decomposition.factor_analysis                   110      0   100%
sklearn.decomposition.fastica_                          169     12
93%   108, 250, 276-277, 304-306, 320, 328, 337, 522, 528
sklearn.decomposition.kernel_pca                         82      2
98%   172, 258
sklearn.decomposition.nmf                               206      8
96%   109, 263, 381, 401-403, 426, 547
sklearn.decomposition.pca                               205      8
96%   54, 66-67, 284, 328, 479, 491, 666
sklearn.decomposition.sparse_pca                         59      2
97%   107, 252
sklearn.decomposition.truncated_svd                      52      5
90%   82-84, 147, 188-190
sklearn.dummy                                           110      0   100%
sklearn.ensemble                                         18      0   100%
sklearn.ensemble.bagging                                234     12
95%   61, 85, 137, 164-169, 273, 544, 588, 608, 615, 642
sklearn.ensemble.base                                    37      2
95%   63, 90
sklearn.ensemble.forest                                 287     22
92%   78, 125, 142, 234, 255, 310, 372, 385, 479-480, 597-600, 751,
755, 884, 888, 1032, 1036, 1169, 1173, 1265, 1269
sklearn.ensemble.gradient_boosting                      384     12
97%   54, 124, 189, 216, 369, 420, 528, 533, 637, 652, 740-741
sklearn.ensemble.partial_dependence                     159    104
35%   54, 56, 237-388
sklearn.ensemble.setup                                   10      2
80%   16-17
sklearn.ensemble.weight_boosting                        278     28
90%   107-111, 145, 155, 191, 228, 237-238, 388, 442-443, 504-505,
530-531, 594-595, 688-690, 799, 902, 952-953, 978, 980, 992
sklearn.externals                                         1      0   100%
sklearn.externals.joblib                                 10      0   100%
sklearn.externals.joblib._compat                          4      2    50%   7-8
sklearn.externals.joblib.disk                            51     11
78%   28, 84-88, 94, 103-107
sklearn.externals.joblib.format_stack                   227     46
80%   34-35, 50, 55, 63, 67-70, 133-135, 146, 148, 168-173, 193-197,
201-205, 208, 215-224, 246-247, 282-286, 299-300, 323, 345-346,
363-367, 372-375, 405, 412
sklearn.externals.joblib.func_inspect                   125     19
85%   47-54, 82, 107-111, 118-119, 127, 152-153, 199, 238, 242
sklearn.externals.joblib.hashing                         91     18
80%   22, 54-55, 71, 88-99, 144, 155-159, 195
sklearn.externals.joblib.logger                          73     10
86%   29, 42, 68, 78, 94, 99, 115, 121, 138-139
sklearn.externals.joblib.memory                         239     20
92%   19-20, 58, 130, 159-160, 282, 294-295, 305, 358, 360, 380-381,
400-401, 411, 481, 527, 552
sklearn.externals.joblib.my_exceptions                   42      3
93%   43, 70-71
sklearn.externals.joblib.numpy_pickle                   170     20
88%   21-27, 86, 115, 122-125, 196-197, 243-246, 272-273, 290, 298
sklearn.externals.joblib.parallel                       222     23
90%   19-20, 29-30, 39-41, 54, 104, 124, 324, 331-332, 399-401, 451,
457, 460, 472-474, 480, 509
sklearn.externals.setup                                   6      0   100%
sklearn.externals.six                                   170     63
63%   34-40, 54-56, 92-94, 107-115, 190, 195-201, 205-213, 228-230,
234-237, 240, 245, 260, 272-284, 298-308, 319-320
sklearn.feature_extraction                                5      0   100%
sklearn.feature_extraction.dict_vectorizer               97      3
97%   237, 255-256
sklearn.feature_extraction.hashing                       39      1    97%   102
sklearn.feature_extraction.image                        148      0   100%
sklearn.feature_extraction.setup                         10      0   100%
sklearn.feature_extraction.stop_words                     1      0   100%
sklearn.feature_extraction.text                         372     19
95%   104-105, 232, 381-385, 387-391, 414, 419-420, 614-618, 630, 635,
681, 743, 806, 836, 974
sklearn.feature_selection                                14      0   100%
sklearn.feature_selection.base                           34      1    97%   112
sklearn.feature_selection.from_model                     46      8
83%   47, 53, 59, 63, 72, 90, 101-104
sklearn.feature_selection.rfe                           102      7
93%   122, 131, 144, 151, 205, 208, 353
sklearn.feature_selection.selector_mixin                  4      0   100%
sklearn.feature_selection.univariate_selection          175      5
97%   246, 358, 364, 414, 569
sklearn.feature_selection.variance_threshold             21      0   100%
sklearn.gaussian_process                                  5      0   100%
sklearn.gaussian_process.correlation_models              78     28
64%   47, 52, 90, 95, 128-147, 177-184, 220, 226, 270, 276
sklearn.gaussian_process.gaussian_process               335    105
69%   21, 309, 318, 320, 324, 329, 344, 349, 355, 361, 373-381, 426,
459-467, 495-520, 582-586, 597-598, 604-610, 616-623, 680-682, 688,
722-724, 742-744, 750-799, 812, 828, 834, 845, 848, 853-856, 868, 871,
876
sklearn.gaussian_process.regression_models               19      0   100%
sklearn.grid_search                                     210      5
98%   276, 328, 379, 431, 666
sklearn.hmm                                             454     35
92%   156, 311-312, 417, 452-454, 536, 539, 710, 719-726, 752, 764,
815-816, 946, 1010, 1014, 1018, 1023, 1032, 1118, 1175, 1182, 1203,
1214-1216
sklearn.isotonic                                         71      6
92%   57-60, 166-169, 229-232
sklearn.kernel_approximation                            152      6
96%   246, 255, 440-441, 453, 484
sklearn.lda                                              93     16
83%   91-95, 120, 124, 131, 140, 142-143, 162, 210-213
sklearn.linear_model                                     14      0   100%
sklearn.linear_model.base                               147      4
97%   269, 299, 404-405
sklearn.linear_model.bayes                              126      8
94%   172-178, 204, 411
sklearn.linear_model.coordinate_descent                 334     37
89%   82, 344, 352, 358, 361-362, 376, 385, 431-432, 436-441, 551-552,
596, 860-861, 920, 923, 926-928, 932, 963, 1018-1020, 1230-1231,
1346-1347, 1387-1388, 1401, 1417, 1420
sklearn.linear_model.least_angle                        363     18
95%   165-166, 285-286, 293-302, 403, 518, 787-790
sklearn.linear_model.logistic                            11      0   100%
sklearn.linear_model.omp                                286     29
90%   101-102, 209-210, 311-314, 328, 337, 444, 447, 452, 598-601,
606-610, 615-619, 624-628, 669, 733-740, 751
sklearn.linear_model.passive_aggressive                  25      0   100%
sklearn.linear_model.perceptron                           5      0   100%
sklearn.linear_model.randomized_l1                      174      9
95%   69, 100, 122, 135, 142, 585, 603, 612-613
sklearn.linear_model.ridge                              346     34
90%   67, 73-84, 140-153, 232, 242, 261-263, 276, 282, 290-292, 644,
649, 670, 708-712, 724, 753, 825, 1022
sklearn.linear_model.setup                               19      2
89%   41-42
sklearn.linear_model.stochastic_gradient                306     11
96%   134-135, 225, 307-310, 386-391, 840-843
sklearn.manifold                                          5      0   100%
sklearn.manifold.isomap                                  46      0   100%
sklearn.manifold.locally_linear                         218     22
90%   45, 47, 147, 176, 271, 274, 283, 286, 289, 310, 333-334, 360,
384-389, 437, 482-483
sklearn.manifold.mds                                    102     21
79%   79-80, 98-107, 122, 124-128, 229-233, 345, 378, 385-388
sklearn.manifold.spectral_embedding_                    144     19
87%   197-200, 270-282, 306, 387, 411-414, 459
sklearn.metrics                                           9      0   100%
sklearn.metrics.cluster                                  15      0   100%
sklearn.metrics.cluster.bicluster                         2      0   100%
sklearn.metrics.cluster.bicluster.bicluster_metrics      28      0   100%
sklearn.metrics.cluster.setup                            14      2
86%   22-23
sklearn.metrics.cluster.supervised                      110      0   100%
sklearn.metrics.cluster.unsupervised                     27      0   100%
sklearn.metrics.metrics                                 374      1    99%   1880
sklearn.metrics.pairwise                                233      5
98%   176, 268, 785, 891, 1052
sklearn.metrics.scorer                                   77      3
96%   41, 107, 144
sklearn.metrics.setup                                    13      2
85%   20-21
sklearn.mixture                                           5      0   100%
sklearn.mixture.dpgmm                                   348     25
93%   211-216, 219, 222, 228, 256, 271, 372-375, 465, 470, 507, 667,
695, 702, 747-750
sklearn.mixture.gmm                                     258     30
88%   244, 261-268, 279, 305, 307, 309, 363-364, 425, 427, 446, 480,
572, 596, 625, 627, 630, 633, 643, 646, 651-654, 672
sklearn.multiclass                                      169     10
94%   53, 79, 126, 265, 277, 296-300, 561
sklearn.naive_bayes                                     159      2
99%   319-320
sklearn.neighbors                                        10      0   100%
sklearn.neighbors.base                                  242      8
97%   88, 97, 122, 148, 224, 316, 495, 610
sklearn.neighbors.classification                         96      0   100%
sklearn.neighbors.graph                                  10      0   100%
sklearn.neighbors.kde                                    67      0   100%
sklearn.neighbors.nearest_centroid                       51      3
94%   90, 99, 157
sklearn.neighbors.regression                             48      0   100%
sklearn.neighbors.setup                                  13      0   100%
sklearn.neighbors.unsupervised                            7      0   100%
sklearn.neural_network                                    1      0   100%
sklearn.neural_network.rbm                               84      0   100%
sklearn.pipeline                                        138      6
96%   81, 91, 188, 273, 335, 342
sklearn.pls                                               3      0   100%
sklearn.preprocessing                                    17      0   100%
sklearn.preprocessing._weights                           12      0   100%
sklearn.preprocessing.data                              331      6
98%   62, 392-394, 430, 439, 456
sklearn.preprocessing.imputation                        177      9
95%   90, 93-98, 170, 175, 373, 385
sklearn.preprocessing.label                              98      3
97%   217, 408, 434
sklearn.qda                                              76      5
93%   104, 168-172
sklearn.random_projection                               114      0   100%
sklearn.semi_supervised                                   2      0   100%
sklearn.semi_supervised.label_propagation               112      4
96%   130, 135, 171, 209
sklearn.setup                                            63      4
94%   75-77, 90-91
sklearn.svm                                               4      0   100%
sklearn.svm.base                                        279      9
97%   135, 290, 314, 358, 444, 498, 554, 619, 659
sklearn.svm.bounds                                       35      0   100%
sklearn.svm.classes                                      25      0   100%
sklearn.svm.setup                                        26      4
85%   57-58, 86-87
sklearn.tree                                              6      0   100%
sklearn.tree.export                                      51     13
75%   57, 67-72, 95, 122-126, 130, 136
sklearn.tree.setup                                       14      2
86%   23-24
sklearn.tree.tree                                       193     13
93%   123, 127, 210, 214, 322, 443, 447, 634, 638, 685, 689, 736, 740
sklearn.utils                                           121      3
98%   323, 381, 385
sklearn.utils.arpack                                    635    285
55%   308, 313, 316, 365-369, 430, 432, 434, 440-451, 454, 456,
464-498, 501, 504, 510, 517, 537, 543-544, 546-548, 554, 556, 565,
579, 587, 630, 632, 634, 639-680, 683, 686, 692, 707, 719, 729,
735-736, 738, 740, 746-749, 772, 795-804, 811-835, 842-843, 849, 853,
860-876, 881, 887-888, 907, 934-946, 949-954, 964-985, 988, 991,
994-999, 1010, 1024, 1033-1047, 1185, 1187-1191, 1196, 1202, 1205,
1214-1253, 1423-1440, 1443, 1445-1449, 1461, 1469-1479, 1483,
1493-1494, 1498-1528, 1563, 1568-1569, 1603, 1616
sklearn.utils.bench                                       3      0   100%
sklearn.utils.class_weight                               19      0   100%
sklearn.utils.extmath                                   191     29
85%   50-53, 58, 67-70, 95-118, 126, 131, 264-266, 380, 443, 601, 613
sklearn.utils.fixes                                     127     24
81%   25, 50-51, 57, 61, 71, 86-88, 94, 109, 119, 138, 145, 156,
174-175, 185-187, 196-198, 208-211, 213
sklearn.utils.graph                                      75      5
93%   52, 66, 72, 112, 131
sklearn.utils.linear_assignment_                        106      5
95%   97-100, 249
sklearn.utils.multiclass                                 81      0   100%
sklearn.utils.setup                                      27      2
93%   75-76
sklearn.utils.sparsetools                                 3      0   100%
sklearn.utils.sparsetools._graph_validation              31     13
58%   18, 29, 31-36, 39-46, 53, 56
sklearn.utils.sparsetools.setup                          11      2
82%   28-29
sklearn.utils.validation                                127      2
98%   56, 205
-----------------------------------------------------------------------------------
TOTAL                                                 18954   2096    89%
----------------------------------------------------------------------
Ran 2650 tests in 300.384s

FAILED (SKIP=42, errors=1)
[Parallel(n_jobs=1)]: Done   1 jobs       | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   9 out of   9 | elapsed:    0.0s finished
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/metrics/metrics.py>:1490:
UndefinedMetricWarning: Precision and F-score are ill-defined and
being set to 0.0 due to no predicted samples.
  'precision', 'predicted', average)
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/hmm.py>:795:
RuntimeWarning: underflow encountered in multiply
  stats['obs*obs.T'][c] += posteriors[t, c] * obsobsT
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/naive_bayes.py>:207:
RuntimeWarning: divide by zero encountered in log
  self.class_log_prior_ = (np.log(self.class_count_)
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/decomposition/pca.py>:654:
DeprecationWarning: Sparse matrix support is deprecated and will be
dropped in 0.16. Use TruncatedSVD instead.
  DeprecationWarning)
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/qda.py>:151:
RuntimeWarning: divide by zero encountered in log
  + np.log(self.priors_))
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/qda.py>:125:
UserWarning: Variables are collinear
  warnings.warn("Variables are collinear")
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/qda.py>:147:
RuntimeWarning: divide by zero encountered in power
  X2 = np.dot(Xm, R * (S ** (-0.5)))
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/qda.py>:147:
RuntimeWarning: invalid value encountered in multiply
  X2 = np.dot(Xm, R * (S ** (-0.5)))
<https://jenkins.shiningpanda-ci.com/scikit-learn/job/python-2.6-numpy-1.3.0-scipy-0.7.2/ws/sklearn/qda.py>:150:
RuntimeWarning: divide by zero encountered in log
  return (-0.5 * (norm2 + np.sum(np.log(self.scalings_), 1))
make: *** [test-coverage] Error 1
Build step 'Custom Python Builder' marked build as failure
Archiving artifacts
Skipping Cobertura coverage report as build was not UNSTABLE or better ...


-- 
Olivier
http://twitter.com/ogrisel - http://github.com/ogrisel

------------------------------------------------------------------------------
How ServiceNow helps IT people transform IT departments:
1. Consolidate legacy IT systems to a single system of record for IT
2. Standardize and globalize service processes across IT
3. Implement zero-touch automation to replace manual, redundant tasks
http://pubads.g.doubleclick.net/gampad/clk?id=51271111&iu=/4140/ostg.clktrk
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to