Hi all,

first of all thanks for all the developers for working on scikit-learn, it
is a wonderful library.
I am struggling for a while now with the following problem:
Trying to use GBR with LR as a BaseEstimator, and I'm getting the following
error:

 File "main.py", line 110, in main
    score = np.mean(cross_validation.cross_val_score(rd, X, y, cv=4,
scoring='roc_auc'))
  File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line
1152, in cross_val_score
    for train, test in cv)
  File
"C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line
517, in __call__
    self.dispatch(function, args, kwargs)
  File
"C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line
312, in dispatch
    job = ImmediateApply(func, args, kwargs)
  File
"C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line
136, in __init__
    self.results = func(*args, **kwargs)
  File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line
1060, in _cross_val_score
    estimator.fit(X_train, y_train, **fit_params)
  File
"C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line
890, in fit
    return super(GradientBoostingClassifier, self).fit(X, y)
  File
"C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line
613, in fit
    random_state)
  File
"C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line
486, in _fit_stage
    sample_mask, self.learning_rate, k=k)
  File
"C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line
172, in update_terminal_regions
    y_pred[:, k])
IndexError: too many indices

I have found a similar problem on stackoverflow (
http://stackoverflow.com/questions/17454139/gradientboostingclassifier-with-a-baseestimator-in-scikit-learn)
and tried to implement the adaptor but it didn't help, the error remained
the same.

Does anyone have any ideas how to resolve this?

Cheers;
Attila
------------------------------------------------------------------------------
October Webinars: Code for Performance
Free Intel webinars can help you accelerate application performance.
Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most from 
the latest Intel processors and coprocessors. See abstracts and register >
http://pubads.g.doubleclick.net/gampad/clk?id=60135991&iu=/4140/ostg.clktrk
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to