Hi,

I am trying to implement the LDA algorithm using the sklearn, in python

The code is:

import numpy as np

from sklearn.lda import LDA


 X = np.array ([[0.000000, 0.000000, 0.000000, 0.000000, 0.001550,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.201550, 0.011111, 0.077778,

0.011111, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.092732, 0.000000, 0.000000, 0.000000,

0.000000, 0.035659, 0.000000, 0.000000, 0.000000,

0.000000, 0.066667, 0.000000, 0.000000, 0.010853,

0.000000, 0.033333, 0.055556, 0.055556, 0.077778,

0.000000, 0.000000, 0.000000, 0.268170, 0.000000,

0.000000, 0.000000, 0.000000, 0.130233, 0.000000,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.034109, 0.077778, 0.055556, 0.011111,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.155388, 0.000000, 0.000000, 0.000000, 0.000000,

0.181395, 0.000000, 0.000000, 0.000000, 0.000000,

0.001550, 0.007752, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.011111, 0.088889, 0.033333,

0.000000, 0.000000, 0.142857, 0.000000, 0.000000,

0.000000, 0.000000, 0.093023, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.009302, 0.010853,

0.000000, 0.100000, 0.000000, 0.000000, 0.000000,

0.000000, 0.022222, 0.088889, 0.033333, 0.238095,

0.000000, 0.000000, 0.000000, 0.000000, 0.032558,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.182946, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.022222, 0.077778, 0.055556,

0.000000, 0.102757],

[0.000000, 0.000000, 0.000000, 0.000000, 0.001550,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.201550, 0.011111, 0.077778,

0.011111, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.092732, 0.000000, 0.000000, 0.000000,

0.000000, 0.035659, 0.000000, 0.000000, 0.000000,

0.000000, 0.066667, 0.000000, 0.000000, 0.010853,

0.000000, 0.033333, 0.055556, 0.055556, 0.077778,

0.000000, 0.000000, 0.000000, 0.268170, 0.000000,

0.000000, 0.000000, 0.000000, 0.130233, 0.000000,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.034109, 0.077778, 0.055556, 0.011111,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.155388, 0.000000, 0.000000, 0.000000, 0.000000,

0.181395, 0.000000, 0.000000, 0.000000, 0.000000,

0.001550, 0.007752, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.011111, 0.088889, 0.033333,

0.000000, 0.000000, 0.142857, 0.000000, 0.000000,

0.000000, 0.000000, 0.093023, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.009302, 0.010853,

0.000000, 0.100000, 0.000000, 0.000000, 0.000000,

0.000000, 0.022222, 0.088889, 0.033333, 0.238095,

0.000000, 0.000000, 0.000000, 0.000000, 0.032558,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.182946, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.022222, 0.077778, 0.055556,

0.000000, 0.102757]])

y = np.array ([[0.000000, 0.000000, 0.008821, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.179631, 0.010471, 0.036649,

0.026178, 0.000000, 0.000000, 0.020942, 0.010471,

0.000000, 0.109215, 0.000000, 0.000000, 0.060144,

0.000000, 0.042502, 0.000000, 0.005613, 0.000000,

0.000000, 0.018444, 0.000000, 0.000000, 0.013633,

0.020942, 0.031414, 0.083770, 0.015707, 0.041885,

0.041885, 0.057592, 0.010471, 0.233788, 0.000000,

0.000000, 0.018444, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.090617, 0.000000, 0.000000,

0.000000, 0.104250, 0.005236, 0.020942, 0.031414,

0.000000, 0.000000, 0.010471, 0.015707, 0.005236,

0.056314, 0.000000, 0.000000, 0.026464, 0.000000,

0.004010, 0.000000, 0.031275, 0.007217, 0.036889,

0.007217, 0.013633, 0.000000, 0.000000, 0.005236,

0.047120, 0.057592, 0.015707, 0.010471, 0.047120,

0.062827, 0.005236, 0.262799, 0.000000, 0.000000,

0.000000, 0.000000, 0.000802, 0.000000, 0.000000,

0.000000, 0.001604, 0.000000, 0.052927, 0.000000,

0.039294, 0.026178, 0.041885, 0.031414, 0.000000,

0.000000, 0.041885, 0.073298, 0.000000, 0.308874,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.236568, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.020942, 0.015707,

0.000000, 0.029010,

0.000000, 0.000000, 0.008821, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.179631, 0.010471, 0.036649,

0.026178, 0.000000, 0.000000, 0.020942, 0.010471,

0.000000, 0.109215, 0.000000, 0.000000, 0.060144,

0.000000, 0.042502, 0.000000, 0.005613, 0.000000,

0.000000, 0.018444, 0.000000, 0.000000, 0.013633,

0.020942, 0.031414, 0.083770, 0.015707, 0.041885,

0.041885, 0.057592, 0.010471, 0.233788, 0.000000,

0.000000, 0.018444, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.090617, 0.000000, 0.000000,

0.000000, 0.104250, 0.005236, 0.020942, 0.031414,

0.000000, 0.000000, 0.010471, 0.015707, 0.005236,

0.056314, 0.000000, 0.000000, 0.026464, 0.000000,

0.004010, 0.000000, 0.031275, 0.007217, 0.036889,

0.007217, 0.013633, 0.000000, 0.000000, 0.005236,

0.047120, 0.057592, 0.015707, 0.010471, 0.047120,

0.062827, 0.005236, 0.262799, 0.000000, 0.000000,

0.000000, 0.000000, 0.000802, 0.000000, 0.000000,

0.000000, 0.001604, 0.000000, 0.052927, 0.000000,

0.039294, 0.026178, 0.041885, 0.031414, 0.000000,

0.000000, 0.041885, 0.073298, 0.000000, 0.308874,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.236568, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.020942, 0.015707,

0.000000, 0.029010

],

[0.000000, 0.000000, 0.008821, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.179631, 0.010471, 0.036649,

0.026178, 0.000000, 0.000000, 0.020942, 0.010471,

0.000000, 0.109215, 0.000000, 0.000000, 0.060144,

0.000000, 0.042502, 0.000000, 0.005613, 0.000000,

0.000000, 0.018444, 0.000000, 0.000000, 0.013633,

0.020942, 0.031414, 0.083770, 0.015707, 0.041885,

0.041885, 0.057592, 0.010471, 0.233788, 0.000000,

0.000000, 0.018444, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.090617, 0.000000, 0.000000,

0.000000, 0.104250, 0.005236, 0.020942, 0.031414,

0.000000, 0.000000, 0.010471, 0.015707, 0.005236,

0.056314, 0.000000, 0.000000, 0.026464, 0.000000,

0.004010, 0.000000, 0.031275, 0.007217, 0.036889,

0.007217, 0.013633, 0.000000, 0.000000, 0.005236,

0.047120, 0.057592, 0.015707, 0.010471, 0.047120,

0.062827, 0.005236, 0.262799, 0.000000, 0.000000,

0.000000, 0.000000, 0.000802, 0.000000, 0.000000,

0.000000, 0.001604, 0.000000, 0.052927, 0.000000,

0.039294, 0.026178, 0.041885, 0.031414, 0.000000,

0.000000, 0.041885, 0.073298, 0.000000, 0.308874,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.000000, 0.000000,

0.236568, 0.000000, 0.000000, 0.000000, 0.000000,

0.000000, 0.000000, 0.000000, 0.020942, 0.015707,

0.000000, 0.029010 ]

 ])

clf = LDA()

clf.fit(X, y)

print(clf.predict(2, 1))


But, I got the message error:


 clf.fit(X, y)

fac = 1 / (n_samples - n_classes)
ZeroDivisionError: float division by zero


What I do to solve this error?

I am using this version of the LDA, from SKLEARN
http://scikit-learn.org/stable/modules/generated/sklearn.lda.LDA.html

The second question is:

Can I use  sklearn.lda with 2 .txt files? Files have 68.830 kB and 174.317
KB. The first one is a test file and the second is training file.

How I can use them, some suggestion?

Thank you very much!
------------------------------------------------------------------------------
November Webinars for C, C++, Fortran Developers
Accelerate application performance with scalable programming models. Explore
techniques for threading, error checking, porting, and tuning. Get the most 
from the latest Intel processors and coprocessors. See abstracts and register
http://pubads.g.doubleclick.net/gampad/clk?id=60136231&iu=/4140/ostg.clktrk
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to