Hi, I'm trying to use GridSearchCV and Pipeline to tune the gamma parameter of kernel PCA. I'd like to use kernel PCA to transform the data, followed by kmeans to cluster the data, followed by v-measure to measure the goodness of fit of the clustering.
Here's the relevant snippet of my script ----- # Set up the kPCA -> kmeans -> v-measure pipeline kpca = KernelPCA(kernel="rbf") kmeans = KMeans(n_clusters=3) pipe = Pipeline(steps=[('kpca', kpca), ('kmeans', kmeans)]) # Range of parameters to consider for gamma in the RBF kernel for kPCA gammas = np.logspace(-10,2,num=100) # Parameters of pipelines are set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(kpca__gamma=gammas), scoring=v_measure_score(labels[:,0],kmeans.labels_)) estimator.fit(D_scaled) ----- Yet I get an AttributeError claiming that the kmeans object has no labels_ attribute. File "/home/lee/projects/SdA_reduce/utils/kernel_pca_pipeline.py", line 86, in <module> estimator = GridSearchCV(pipe, dict(kpca__gamma=gammas), scoring=v_measure_score(labels[:,0],kmeans.labels_)) AttributeError: 'KMeans' object has no attribute 'labels_' Does anyone have any tips on how I should restructure my snippet to get my desired outcome? Thanks, Lee. ------------------------------------------------------------------------------ "Accelerate Dev Cycles with Automated Cross-Browser Testing - For FREE Instantly run your Selenium tests across 300+ browser/OS combos. Get unparalleled scalability from the best Selenium testing platform available Simple to use. Nothing to install. Get started now for free." http://p.sf.net/sfu/SauceLabs _______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general